cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A371415 Dedekind psi function applied to the cubefull exponentially odd numbers (A335988).

Original entry on oeis.org

1, 12, 36, 48, 150, 192, 432, 324, 392, 768, 1728, 1800, 1452, 3888, 3072, 2916, 2366, 4704, 3750, 5400, 6912, 7200, 5202, 7220, 15552, 12288, 14112, 17424, 18816, 12696, 27648, 28800, 19208, 34992, 28392, 26244, 25230, 45000, 64800, 30752, 48600, 62208, 49152
Offset: 1

Views

Author

Amiram Eldar, Mar 22 2024

Keywords

Crossrefs

Similar sequences: A323332, A371413, A371414.

Programs

  • Mathematica
    psi[n_] := n * Times @@ (1 + 1/FactorInteger[n][[;; , 1]]); psi[1] = 1; Join[{1}, psi /@ Select[Range[40000], AllTrue[Last /@ FactorInteger[#], #1 > 1 && OddQ[#1] &] &]]
  • PARI
    dedpsi(f) = prod(i = 1, #f~, (f[i, 1] + 1) * f[i, 1]^(f[i, 2]-1));
    lista(max) = {my(f, ans); print1(1, ", "); for(k = 2, max, f = factor(k); ans = 1; for (i = 1, #f~, if (f[i, 2] == 1 || !(f[i, 2] % 2), ans = 0; break)); if(ans, print1(dedpsi(f), ", ")));}

Formula

a(n) = A001615(A335988(n)).
Sum_{n>=1} 1/a(n) = (Pi^4/36) * Product_{p prime} (1 - (2*p-1)/p^3) = A098198 * A065464 = 1.158760974549073218921828... .

A371412 Euler totient function applied to the cubefull numbers (A036966).

Original entry on oeis.org

1, 4, 8, 18, 16, 32, 54, 100, 64, 72, 162, 128, 294, 144, 256, 500, 216, 486, 288, 400, 512, 432, 1210, 576, 648, 800, 1024, 1458, 2028, 2058, 864, 1176, 2500, 1800, 1152, 1296, 1600, 2048, 4624, 2000, 1728, 2352, 1944, 4374, 6498, 2304, 2592, 3200, 4096, 5292, 4000
Offset: 1

Views

Author

Amiram Eldar, Mar 22 2024

Keywords

Crossrefs

Similar sequences: A323333, A358039, A371413, A371414.

Programs

  • Mathematica
    Join[{1}, EulerPhi /@ Select[Range[20000], AllTrue[Last /@ FactorInteger[#], #1 > 2 &] &]]
    (* or *)
    f[n_] := Module[{f = FactorInteger[n], p, e}, If[n == 1, 1, p = f[[;;, 1]]; e = f[[;;, 2]]; If[Min[e] > 2, Times @@ ((p-1) * p^(e-1)), Nothing]]]; Array[f, 20000]
  • PARI
    lista(max) = {my(f); print1(1, ", "); for(k = 2, max, f = factor(k); if(vecmin(f[, 2]) > 2, print1(eulerphi(f), ", ")));}

Formula

a(n) = A000010(A036966(n)).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/((p-1)^2*p)) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 1/p^3 + 3/p^4 + 1/p^5) = 1.65532418864085918623... .

A374457 The Dedekind psi function values of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 3, 4, 6, 12, 8, 12, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 48, 42, 36, 30, 72, 32, 48, 48, 54, 48, 38, 60, 56, 72, 42, 96, 44, 72, 48, 72, 54, 108, 72, 96, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 144, 90
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2024

Keywords

Crossrefs

Similar sequences related to psi: A000082, A033196, A323332, A371413, A371415.
Similar sequences related to exponentially odd numbers: A366438, A366439, A366534, A366535, A367417, A368711, A374456.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p+1) * p^(e-1), 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 100], # > 0 &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]+1) * f[i, 1]^(f[i, 2] - 1), 0));}
    lista(kmax) = {my(s1); for(k = 1, kmax, s1 = s(k); if(s1 > 0, print1(s1, ", ")));}

Formula

a(n) = A001615(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 / A065463^2 = 2.01515877170903249510... .
Showing 1-3 of 3 results.