cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A360526 Odd numbers k such that A360522(k) > 2*k.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 112035, 116655
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

First differs from A112643, A129485, A249263 at n = 46: a(46) = 165165 is not a term of these sequences.

Examples

			15015 is a term since A360522(15015) = 32256 > 2*15015.
		

Crossrefs

Cf. A360522.
Subsequence of A005101, A005231 and A360525.

Programs

  • Mathematica
    f[p_, e_] := p^e + e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := s[n] > 2*n; Select[Range[1, 10^5, 2], q]
  • PARI
    isab(n) = { my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,2]) > 2*n;}
    is(n) = n%2 && isab(n);

A357607 Odd numbers k such that A162296(k) > 2*k.

Original entry on oeis.org

4725, 6615, 7875, 8505, 11025, 14175, 15435, 17325, 19845, 20475, 22275, 23625, 24255, 25515, 26775, 28665, 29925, 31185, 33075, 36225, 36855, 37125, 37485, 38115, 39375, 40425, 41895, 42525, 46305, 47775, 48195, 50715, 51975, 53235, 53865, 55125, 57915, 59535
Offset: 1

Views

Author

Amiram Eldar, Oct 06 2022

Keywords

Comments

The least term that is not divisible by 3 is a(89047132) = 134785275625.
The numbers of terms not exceeding 10^k, for k = 4, 5, ..., are 4, 60, 640, 6650, 66044, 660230, 6604594, 66073470, ... . Apparently, the asymptotic density of this sequence exists and equals 0.000660... .

Examples

			4725 is a term since it is odd, and A162296(4725) = 9728 > 2*4725.
		

Crossrefs

Cf. A162296.
Subsequence of A005231, A013929 and A357605.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) > 2*n]; Select[Range[3, 60000, 2], q]
Showing 1-2 of 2 results.