cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A379031 Odd modified exponential abundant numbers: odd numbers k such that A241405(k) > 2*k.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 112035, 116655
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

First differs from its subsequences A112643 and A249263 at n = 51: a(51) = 195195 is not a term of these two sequences.
First differs from its subsequence A129485 at n = 363: a(363) = 2537535 is not a term of A129485.
First differs from A339938 at n = 28: A339938(28) = 75075 is not a term of this sequence.
First differs from A360526 at n = 46: A360526(46) = 165165 is not a term of this sequence.

Crossrefs

Intersection of A005408 and A379029.
Subsequence of A005231.
Subsequences: A112643, A129485, A249263.
Cf. A241405.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := Times @@ f @@@ FactorInteger[n]; meAbQ[n_] := mesigma[n] > 2*n; Select[Range[1, 10^5, 2], meAbQ]
  • PARI
    is(k) = if(!(k%2), 0, my(f=factor(k)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))) > 2*k);

A380932 Odd numbers k such that A380845(k) > 2*k.

Original entry on oeis.org

322245, 590205, 874665, 966735, 1934415, 2900205, 3224025, 3378375, 3869775, 4729725, 6081075, 6449625, 6818175, 7740495, 8783775, 8906625, 9029475, 9889425, 10135125, 10961685, 11609325, 11821425, 12900825, 13378365, 14189175, 15049125, 15481935, 15909075, 16253055
Offset: 1

Views

Author

Amiram Eldar, Feb 08 2025

Keywords

Comments

The odd terms in A380929.
Analogous to odd abundant numbers (A005231) with A380845 instead of A000203.

Examples

			322245 is a term since it is odd, and A380845(322245) = 679582 > 2 * 322245 = 644490.
		

Crossrefs

Intersection of A005408 and A380929.
Subsequence of A005231.

Programs

  • Mathematica
    q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 2*k]; Select[Range[1,10^6,2], q]
  • PARI
    isok(k) = if(!(k % 2), 0, my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 2*k);

A360525 Numbers k such that A360522(k) > 2*k.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 90, 102, 114, 120, 126, 132, 138, 140, 150, 156, 168, 174, 180, 186, 204, 210, 222, 228, 246, 252, 258, 276, 282, 294, 300, 318, 330, 348, 354, 360, 366, 372, 390, 402, 420, 426, 438, 444, 462, 474, 492, 498, 510, 516, 534, 546, 564
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

First differs from A308127 at n = 15.
Analogous to abundant numbers (A005101) with A360522 instead of A000203.
Subsequence of A005101 because A360522(n) <= A000203(n) for all n.
The least odd term is a(1698) = A360526(1) = 15015.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 8, 95, 1135, 10890, 110867, 1104596, 11048123, 110534517, 1105167384, 11051009278, ... . Apparently, the asymptotic density of this sequence exists and equals 0.1105...

Examples

			30 is a term since A360522(30) = 72 > 2*30.
		

Crossrefs

Subsequence of A005101.

Programs

  • Mathematica
    f[p_, e_] := p^e + e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := s[n] > 2*n; Select[Range[1000], q]
  • PARI
    is(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,2]) > 2*n;}
Showing 1-3 of 3 results.