cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381072 Odd terms in A381071.

Original entry on oeis.org

322245, 590205, 874665, 3378375, 4729725, 6081075, 6818175, 8783775, 8906625, 9889425, 10135125, 13378365, 15049125, 15909075, 16253055, 18922365, 32684085, 34754265, 36916425, 38144925, 38439765, 39471705, 44778825, 46990125, 57506085, 75200265, 84047355, 88852995
Offset: 1

Views

Author

Amiram Eldar, Feb 13 2025

Keywords

Comments

The first 142 terms are all divisible by 3.
The least term that is not divisible by 5 is a(57) = 885593709.

Crossrefs

Intersection of A005408 and A381071.
Subsequence of A380929 and A380932.

Programs

  • Mathematica
    Select[Range[1, 70000, 2], q] (* using the function q[n_] from A381071 *)

A380933 Numbers k such that k and k+1 are both in A380929.

Original entry on oeis.org

121643775, 157390064, 161019495, 275734304, 584899875, 1493214975, 1614323655, 2043708975, 3081783375, 3118599224, 3426851295, 3902652495, 3947893424, 5849043375, 11731509855, 12138531615, 13008843224, 14598032624, 17588484584, 19782621495, 20191564575, 20759209064
Offset: 1

Views

Author

Amiram Eldar, Feb 08 2025

Keywords

Comments

Numbers k such that A380845(k) > 2*k and A380845(k+1) > 2*(k+1).

Examples

			121643775 is a term since A380845(121643775) = 244722015 > 2 * 121643775 = 243287550, and A380845(121643776) = 256456081 > 2 * 121643776 = 243287552.
		

Crossrefs

Subsequence of A096399 and A380929.

Programs

  • Mathematica
    q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 2*k];
    seq[lim_] := Module[{s = {}}, Do[If[q[k], If[q[k-1], AppendTo[s, k-1]]; If[q[k+1], AppendTo[s, k]]], {k, 3, lim, 2}]; s];
    seq[3*10^8]
  • PARI
    isab(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 2*k;}
    list(lim) = forstep(k = 3, lim, 2, if(isab(k), if(isab(k-1), print1(k-1, ", ")); if(isab(k+1), print1(k, ", "))));
Showing 1-2 of 2 results.