Original entry on oeis.org
322245, 590205, 874665, 3378375, 4729725, 6081075, 6818175, 8783775, 8906625, 9889425, 10135125, 13378365, 15049125, 15909075, 16253055, 18922365, 32684085, 34754265, 36916425, 38144925, 38439765, 39471705, 44778825, 46990125, 57506085, 75200265, 84047355, 88852995
Offset: 1
A380933
Numbers k such that k and k+1 are both in A380929.
Original entry on oeis.org
121643775, 157390064, 161019495, 275734304, 584899875, 1493214975, 1614323655, 2043708975, 3081783375, 3118599224, 3426851295, 3902652495, 3947893424, 5849043375, 11731509855, 12138531615, 13008843224, 14598032624, 17588484584, 19782621495, 20191564575, 20759209064
Offset: 1
121643775 is a term since A380845(121643775) = 244722015 > 2 * 121643775 = 243287550, and A380845(121643776) = 256456081 > 2 * 121643776 = 243287552.
-
q[k_] := Module[{h = DigitCount[k, 2, 1]}, DivisorSum[k, # &, DigitCount[#, 2, 1] == h &] > 2*k];
seq[lim_] := Module[{s = {}}, Do[If[q[k], If[q[k-1], AppendTo[s, k-1]]; If[q[k+1], AppendTo[s, k]]], {k, 3, lim, 2}]; s];
seq[3*10^8]
-
isab(k) = {my(h = hammingweight(k)); sumdiv(k, d, d*(hammingweight(d) == h)) > 2*k;}
list(lim) = forstep(k = 3, lim, 2, if(isab(k), if(isab(k-1), print1(k-1, ", ")); if(isab(k+1), print1(k, ", "))));
Showing 1-2 of 2 results.
Comments