cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A318498 Denominators of the sequence whose Dirichlet convolution with itself yields A061389, number of (1+phi)-divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 8, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 16, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 8, 8, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2, 4, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Comments

The sequence seems to give the denominators of a few other similarly constructed rational valued sequences obtained as "Dirichlet Square Roots" (of possibly A092520 and A293443).

Crossrefs

Cf. A061389, A318497 (numerators), A318499.
Cf. also A299150, A046644.

Programs

  • PARI
    up_to = 65537;
    A061389(n) = factorback(apply(e -> (1+eulerphi(e)),factor(n)[,2]));
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318497_98 = DirSqrt(vector(up_to, n, A061389(n)));
    A318497(n) = numerator(v318497_98[n]);
    A318498(n) = denominator(v318497_98[n]);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A061389(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318499(n).

A069915 Sum of (1+phi)-divisors of n (cf. A061389).

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 7, 4, 18, 12, 12, 14, 24, 24, 11, 18, 12, 20, 18, 32, 36, 24, 28, 6, 42, 13, 24, 30, 72, 32, 31, 48, 54, 48, 12, 38, 60, 56, 42, 42, 96, 44, 36, 24, 72, 48, 44, 8, 18, 72, 42, 54, 39, 72, 56, 80, 90, 60, 72, 62, 96, 32, 35, 84, 144, 68, 54, 96, 144, 72
Offset: 1

Views

Author

Vladeta Jovovic, Apr 23 2002

Keywords

Crossrefs

Programs

  • Haskell
    a069915 n = product $ zipWith sum_1phi (a027748_row n) (a124010_row n)
       where sum_1phi p e = 1 + sum [p ^ k | k <- a038566_row e]
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Mathematica
    a[1] = 1; a[p_?PrimeQ] = p + 1; a[n_] := Times @@ (1 + Sum[If[GCD[k, Last[#]] == 1, First[#]^k, 0], {k, 1, Last[#]}] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 71}] (* Jean-François Alcover, May 04 2012 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + sum(k = 1, f[i, 2], (gcd(k, f[i, 2]) == 1) * f[i, 1]^k));} \\ Amiram Eldar, Aug 15 2023

Formula

Multiplicative with a(p^e) = 1+Sum_{k=1..e, gcd(k, e)=1} p^k.

A318497 Numerators of the sequence whose Dirichlet convolution with itself yields A061389, number of (1+phi)-divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Comments

No zeros among the first 2^20 terms. This is most probably multiplicative, like A318498.

Crossrefs

Cf. A061389, A318314 (denominators).

Programs

  • PARI
    up_to = 65537;
    A061389(n) = factorback(apply(e -> (1+eulerphi(e)),factor(n)[,2]));
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318497_98 = DirSqrt(vector(up_to, n, A061389(n)));
    A318497(n) = numerator(v318497_98[n]);

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A061389(n) - Sum_{d|n, d>1, d 1.

A377711 Numbers that have a record number of (1+phi)-divisors (A061389).

Original entry on oeis.org

1, 2, 6, 24, 30, 96, 120, 210, 480, 840, 1920, 2310, 3360, 9240, 13440, 30030, 36960, 120120, 147840, 332640, 480480, 1330560, 1921920, 4324320, 8168160, 17297280, 30750720, 32672640, 73513440, 155195040, 294053760, 522762240, 620780160, 1396755360, 2646483840
Offset: 1

Views

Author

Amiram Eldar, Nov 04 2024

Keywords

Comments

Indices of records in A061389.
The corresponding record values are 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 28, 32, 40, 48, 56, ... (see the link for more values).

Crossrefs

Subsequence of A025487.

Programs

  • Mathematica
    f[p_, e_] := EulerPhi[e] + 1; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n]; v = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]; seq = {}; dm = 0; Do[If[(dk = d[v[[k]]]) > dm, dm = dk; AppendTo[seq, v[[k]]]], {k, 1, Length[v]}]; seq

A049419 a(1) = 1; for n > 1, a(n) = number of exponential divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Keywords

Comments

The exponential divisors of a number x = Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.
Wu gives a complicated Dirichlet g.f.
a(1) = 1 by convention. This is also required for a function to be multiplicative. - N. J. A. Sloane, Mar 03 2009
The inverse Moebius transform seems to be in A124315. The Dirichlet inverse appears to be related to A166234. - R. J. Mathar, Jul 14 2014

Examples

			a(8)=2 because 2 and 2^3 are e-divisors of 8.
The sets of e-divisors start as:
  1:{1}
  2:{2}
  3:{3}
  4:{2, 4}
  5:{5}
  6:{6}
  7:{7}
  8:{2, 8}
  9:{3, 9}
  10:{10}
  11:{11}
  12:{6, 12}
  13:{13}
  14:{14}
  15:{15}
  16:{2, 4, 16}
  17:{17}
  18:{6, 18}
  19:{19}
  20:{10, 20}
  21:{21}
  22:{22}
  23:{23}
  24:{6, 24}
		

Crossrefs

Row lengths of A322791.
Cf. A049599, A061389, A051377 (sum of e-divisors).
Partial sums are in A099593.

Programs

  • GAP
    A049419:=n->Product(List(Collected(Factors(n)), p -> Tau(p[2]))); List([1..10^4], n -> A049419(n)); # Muniru A Asiru, Oct 29 2017
    
  • Haskell
    a049419 = product . map (a000005 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Maple
    A049419 := proc(n)
        local a;
        a := 1 ;
        for pf in ifactors(n)[2] do
            a := a*numtheory[tau](op(2,pf)) ;
        end do:
        a ;
    end proc:
    seq(A049419(n),n=1..20) ; # R. J. Mathar, Jul 14 2014
  • Mathematica
    a[1] = 1; a[p_?PrimeQ] = 1; a[p_?PrimeQ, e_] := DivisorSigma[0, e]; a[n_] := Times @@ (a[#[[1]], #[[2]]] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Jan 30 2012, after Vladeta Jovovic *)
  • PARI
    a(n) = vecprod(apply(numdiv, factor(n)[,2])); \\ Amiram Eldar, Mar 27 2023

Formula

Multiplicative with a(p^e) = tau(e). - Vladeta Jovovic, Jul 23 2001
Sum_{k=1..n} a(k) ~ A327837 * n. - Vaclav Kotesovec, Feb 27 2023

Extensions

More terms from Jud McCranie, May 29 2000

A072911 Number of "phi-divisors" of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Yasutoshi Kohmoto, Aug 21 2002

Keywords

Comments

If n = Product p(i)^r(i), d = Product p(i)^s(i), = s(i)<=r(i) and gcd(s(i), r(i)) = 1, then d is a phi-divisor of n.
The integers n = Product_{i=1..r} p_i^{a_i} and m = Product_{i=1..r} p_i^{b_i}, a_i, b_i >= 1 (1 <= i <= r) having the same prime factors are called exponentially coprime, if gcd(a_i, b_i) = 1 for every 1 <= i <= r, i.e., the only common exponential divisor of n and m is Product_{i=1..r} p_i = the common squarefree kernel of n and m, cf. A049419, A007947. The terms of this sequence count the divisors d of n such that d and n are exponentially coprime. - Laszlo Toth, Oct 06 2008

References

  • József Sándor, On an exponential totient function, Studia Univ. Babes-Bolyai, Math., 41 (1996), 91-94. [Laszlo Toth, Oct 06 2008]

Crossrefs

Programs

  • Haskell
    a072911 = product . map (a000010 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
  • Maple
    A072911 := proc(n)
        local a, p;
        a := 1 ;
        for p in ifactors(n)[2] do
            a := a*numtheory[phi](op(2, p)) ;
        od:
        a ;
    end:
    seq(A072911(n),n=1..100) ; # R. J. Mathar, Sep 25 2008
  • Mathematica
    a[n_] := Times @@ EulerPhi[FactorInteger[n][[All, 2]]];
    Array[a, 105] (* Jean-François Alcover, Nov 16 2017 *)

Formula

If n = Product p(i)^r(i) then a(n) = Product (phi(r(i))), where phi(k) is the Euler totient function of k, cf. A000010.
Sum_{k=1..n} a(k) ~ c_1 * n + c_2 * n^(1/3) + O(n^(1/5+eps)), where c_1 = A327838 (Tóth, 2004). - Amiram Eldar, Oct 30 2022

Extensions

More terms from R. J. Mathar, Sep 25 2008

A372380 The number of divisors of n that are numbers whose number of divisors is a power of 2.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 3, 4, 2, 8, 2, 3, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 6, 4, 6, 4, 4, 2, 8, 2, 4, 4, 3, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Apr 29 2024

Keywords

Comments

First differs from A061389 and A322483 at n = 32.
First differs from A380922 at n = 128. - Vaclav Kotesovec, Apr 22 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[Log2[e + 1]] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> exponent(x+1)+1, factor(n)[, 2]));
    
  • Python
    from math import prod
    from sympy import factorint
    def A372380(n): return prod((e+1).bit_length() for e in factorint(n).values()) # Chai Wah Wu, Apr 30 2024

Formula

Multiplicative with a(p^e) = floor(log_2(e+1)) + 1.
a(n) = A000005(n) if and only if n is squarefree (A005117).

A380922 Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^s + 1/p^(3*s)).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 3, 4, 2, 8, 2, 3, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 6, 4, 6, 4, 4, 2, 8, 2, 4, 4, 3, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4, 6, 2, 8, 4, 4, 4, 4, 4, 6, 2, 4, 4, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 22 2025

Keywords

Comments

First differs from A061389 at n = 32.
First differs from A322483 at n = 32.
First differs from A372380 at n = 128 (next differences are at n=128*k, n=2187*k, ...).
The number of divisors of n that are both biquadratefree (A046100) and exponentially odd (A268335), i.e., in A336591. - Amiram Eldar, Apr 22 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, 2, 3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 22 2025 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-X) * (1 + X + X^3))[n], ", "))

Formula

Let f(s) = Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s) - 1/p^(4*s)).
Dirichlet g.f.: zeta(s)^2 * f(s).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 0.684286924186862318141968725791218083472312736723163777284618226290055...,
f'(1) = f(1) * Sum_{p prime} (2*p^2 - 3*p + 4) * log(p) / ((p-1) * (p^3 + p^2 + 1)) = f(1) * 0.85825768698295295413525347933038488513032293516964600096226328323449...
and gamma is the Euler-Mascheroni constant A001620.
Multiplicative with a(p^e) = 2 if e <= 2 and 3 otherwise. - Amiram Eldar, Apr 22 2025

A095724 Fixed points of 1+Phi power sigma function 1PhiPsigma: integers m such that 1PhiPsigma(m) = m, where for j = Product p_i^r_i, 1PhiPsigma(j) = Product_i Sum_{0 <= s_i <= r_i, s_i is 0 or coprime to r_i} p_i^s_i.

Original entry on oeis.org

12, 56, 528, 992, 6720, 16256, 666624, 67100672
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jul 08 2004

Keywords

Comments

Factorizations: 2^2*3, 2^3*7, 2^4*3*11, 2^5*31, 2^6*3*5*7, 2^7*127, 2^10*3*7*31.
If m is a perfect number then 2*m is a term of the sequence. Examples: 2^2*3, 2^3*7, 2^5*31, 2^7*127, ....
If a(n)=2^r*k, GCD(2^r,k)=1, then k is squarefree.

Examples

			1PhiPsigma(2^5*3^4) = (1 + 2 + 2^2 + 2^3 + 2^4)*(1 + 3 + 3^3) = 961.
		

Crossrefs

Extensions

a(8) from Jud McCranie, Jul 16 2004
Edited by Max Alekseyev, Dec 04 2024
Showing 1-9 of 9 results.