cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 54 results. Next

A318278 Exponential highly composite numbers: where the number of exponential divisors of n (A049419) increases to a record.

Original entry on oeis.org

1, 4, 16, 36, 144, 576, 1296, 3600, 14400, 32400, 129600, 705600, 1587600, 6350400, 39690000, 57153600, 158760000, 768398400, 4802490000, 6915585600, 19209960000, 129859329600, 811620810000, 1168733966400, 3246483240000, 29218349160000, 159077678760000
Offset: 1

Views

Author

Amiram Eldar and David A. Corneth, Aug 29 2018

Keywords

Comments

Analogous to highly composite numbers (A002182) with number of exponential divisors (A049419) instead of number of divisors (A000005). The record numbers of exponential divisors are 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 54, 64, 72, 96, 108, 128, 144, 192, 216, 256, 288, 384, 432, ... The numbers have each exponent > 1. Proof: Suppose for some m, the exponent of prime p is 1. Then m/p has the same number of prime divisors hence m isn't a record. A contradiction hence all exponents are > 1.
Terms have even exponents in A025487 in their prime factorization.
Proof: Suppose some exponent e of a prime is not in A025487. Then there exists some term in A025487 number e1 < e that has the same number of divisors since e > 1. A contradiction hence all exponents are in A025487 and > 1.
By the above discussion, the terms are squares with their square roots: 1,2,4,6,12,24,36,60,120,180,360,840,1260,2520,6300.
The above argument can be trivially modified to further restrict the possible exponents to members of A002182: replace "the same number of" with "at least as many". - Charlie Neder, Oct 27 2018

Examples

			144 is in the sequence since it has 6 exponential divisors (being 6, 12, 18, 36, 48, 144), and no positive integer < 144 has at least 6 exponential divisors hence 144 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    edivnum[1] = 1; edivnum [p_?PrimeQ] = 1; edivnum [p_?PrimeQ, e_] := DivisorSigma[ 0, e ]; edivnum [n_] := Times @@ (edivnum [#[[1]], #[[2]]] & ) /@ FactorInteger[ n ];  em = 0; s = {}; Do[e =edivnum [k]; If[e >em, AppendTo[s, k]; em = e], {k, 1, 100000}]; s (* after Jean-François Alcover in A049419 *)

A327837 Decimal expansion of the asymptotic mean of the number of exponential divisors function (A049419).

Original entry on oeis.org

1, 6, 0, 2, 3, 1, 7, 1, 0, 2, 3, 0, 5, 4, 1, 8, 0, 5, 2, 3, 4, 9, 6, 2, 6, 3, 1, 5, 6, 2, 1, 1, 6, 1, 0, 0, 3, 7, 7, 6, 9, 3, 9, 4, 9, 5, 7, 8, 5, 5, 7, 2, 7, 3, 7, 7, 4, 6, 5, 3, 5, 2, 8, 5, 9, 8, 7, 8, 8, 8, 8, 6, 0, 2, 1, 6, 3, 3, 5, 4, 7, 2, 7, 5, 6, 6, 7, 3, 3, 9, 0, 4, 9, 4, 8, 8, 0, 6, 4, 1, 8, 0, 7, 5, 7
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2019

Keywords

Examples

			1.602317102305418052349626315621161003776939495785572...
		

Crossrefs

Cf. A059956 (constant for unitary divisors), A306071 (bi-unitary), A327576 (infinitary).

Programs

  • Mathematica
    $MaxExtraPrecision = 1500; m = 1500; em = 500; f[x_] := 1 + Log[1 + Sum[x^e * (DivisorSigma[0, e] - DivisorSigma[0, e - 1]), {e, 2, em}]]; c = Rest[ CoefficientList[Series[f[x], {x, 0, m}], x] * Range[0, m] ]; RealDigits[ Exp[NSum[Indexed[c, k] * PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals lim_{k->oo} A145353(k)/k.
Equals Product_{p prime} (1 + Sum_{e >= 2} p^(-e) * (d(e) - d(e-1))), where d(e) is the number of divisors of e (A000005).
Equals Product_{p prime} (1 - 1/p) * (2 - (log(p-1) + QPolyGamma(0, 1, 1/p)) / log(p)). - Vaclav Kotesovec, Feb 27 2023
From Amiram Eldar, Dec 24 2024: (Start)
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} k/uphi(k) = lim_{m->oo} (1/m) * Sum_{k=1..m} A319677(k)/A319676(k), where uphi(k) is the unitary totient function (A047994).
Equals lim_{m->oo} (1/log(m)) * Sum_{k=1..m} 1/uphi(k) = lim_{m->oo} (1/log(m)) * A379517(m)/A379518(m).
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A361967(k).
Equals Product_{p prime} ((1-1/p) * (1 + Sum_{k>=1} 1/(p^k-1))).
Equals Product_{p prime} (1 + (1-1/p) * Sum_{k>=1} 1/(p^k*(p^k-1))). (End)

Extensions

More digits from Vaclav Kotesovec, Jun 13 2021

A344312 Number k such that k and k+1 have the same number of exponential divisors (A049419).

Original entry on oeis.org

1, 2, 5, 6, 8, 10, 13, 14, 21, 22, 24, 27, 29, 30, 33, 34, 37, 38, 41, 42, 44, 46, 49, 57, 58, 61, 65, 66, 69, 70, 73, 75, 77, 78, 80, 82, 85, 86, 93, 94, 98, 101, 102, 105, 106, 109, 110, 113, 114, 116, 118, 120, 122, 124, 125, 129, 130, 133, 135, 137, 138, 141
Offset: 1

Views

Author

Amiram Eldar, May 14 2021

Keywords

Examples

			1 is a term since A049419(1) = A049419(2) = 1.
8 is a term since A049419(8) = A049419(9) = 2.
		

Crossrefs

Cf. A049419.
Similar sequences: A005237, A006049, A343819, A344313, A344314.

Programs

  • Mathematica
    f[p_, e_] := DivisorSigma[0, e]; ed[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[200], ed[#] == ed[# + 1] &]

A348961 Exponential harmonic (or e-harmonic) numbers of type 1: numbers k such that esigma(k) | k * d_e(k), where d_e(k) is the number of exponential divisors of k (A049419) and esigma(k) is their sum (A051377).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105
Offset: 1

Views

Author

Amiram Eldar, Nov 05 2021

Keywords

Comments

First differs from A005117 at n = 24, from A333634 and A348499 at n = 47, and from A336223 at n = 63.
Sándor (2006) proved that all the squarefree numbers are e-harmonic of type 1, and that an e-perfect number (A054979) is a term of this sequence if and only if at least one of the exponents in its prime factorization is not a perfect square.
Since all the e-perfect numbers are products of a primitive e-perfect number (A054980) and a coprime squarefree number, and all the known primitive e-perfect numbers have a nonsquare exponent in their prime factorizations, there is no known e-perfect number that is not in this sequence.

Examples

			3 is a term since esigma(3) = 3, 3 * d_e(3) = 3 * 1, so esigma(3) | 3 * d_e(3).
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e * DivisorSigma[0, e] / DivisorSum[e, p^# &]; ehQ[1] = True; ehQ[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[100], ehQ]

A361807 Numbers k with record values of the ratio A000005(k)/A049419(k) between the number of divisors of k and the number of exponential divisors of k.

Original entry on oeis.org

1, 2, 6, 30, 210, 2310, 30030, 480480, 510510, 8168160, 9699690, 155195040, 223092870, 3569485920, 6469693230, 103515091680, 200560490130, 3208967842080, 7420738134810, 118731810156960, 304250263527210, 4868004216435360, 13082761331670030, 209324181306720480
Offset: 1

Views

Author

Amiram Eldar, Mar 25 2023

Keywords

Comments

This sequence is infinite since the ratio A000005(k)/A049419(k) is unbounded. For example, for k = A002110(m) we have A000005(k)/A049419(k) = 2^m.
The corresponding record values are 1, 2, 4, 8, 16, 32, 64, 96, 128, ...

Examples

			The ratios A000005(k)/A049419(k) for k = 1, 2, 3, 4, 5 and 6 are 1, 2, 2, 3/2, 2 and 4. The record values, 1, 2 and 4, occur at 1, 2 and 6, the first 3 terms of this sequence.
		

Crossrefs

Subsequence of A025487.
Similar sequences: A307870, A335832.

Programs

  • Mathematica
    f[p_, e_] := (e+1)/DivisorSigma[0, e]; r[1] = 1; r[n_] := Times @@ f @@@ FactorInteger[n]; seq[kmax_] := Module[{rm = 0, s = {}, r1}, Do[r1 = r[k]; If[r1 > rm, rm = r1; AppendTo[s, k]], {k, 1 , kmax}]; s]; seq[10^6]
  • PARI
    r(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 2]+1)/numdiv(f[i, 2])); }
    lista(kmax) = {my(rm = 0, r1); for(k = 1, kmax, r1 = r(k); if(r1 > rm, rm = r1; print1(k, ", "))); }

A379714 Partial alternating sums of the number of exponential divisors function (A049419).

Original entry on oeis.org

1, 0, 1, -1, 0, -1, 0, -2, 0, -1, 0, -2, -1, -2, -1, -4, -3, -5, -4, -6, -5, -6, -5, -7, -5, -6, -4, -6, -5, -6, -5, -7, -6, -7, -6, -10, -9, -10, -9, -11, -10, -11, -10, -12, -10, -11, -10, -13, -11, -13, -12, -14, -13, -15, -14, -16, -15, -16, -15, -17, -16
Offset: 1

Views

Author

Amiram Eldar, Dec 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_]  := DivisorSigma[0, e]; ediv[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Table[(-1)^(n+1)*ediv[n], {n, 1, 100}]]
  • PARI
    ediv(n) = vecprod(apply(numdiv, factor(n)[, 2]));
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) * ediv(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} (-1)^(k+1) * A049419(k).
Limit_{n->oo} a(n)/n = A327837 * (2/(A065442 + 1) - 1) = -0.37293122584744001729... .

A051377 a(1)=1; for n > 1, a(n) = sum of exponential divisors (or e-divisors) of n.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 22, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 66, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 78, 65, 66, 67, 102, 69, 70, 71
Offset: 1

Views

Author

Keywords

Comments

The e-divisors (or exponential divisors) of x=Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.
a(n) = n if and only if n is squarefree. - Jon Perry, Nov 13 2012

Examples

			a(8)=10 because 2 and 2^3 are e-divisors of 8 and 2+2^3=10.
		

Crossrefs

Cf. A051378, A049419 (number of e-divisors).
Row sums of A322791.
See A307042 and A275480 where the formula and constant appear.

Programs

  • GAP
    A051377:=n->Product(List(Collected(Factors(n)), p -> Sum(DivisorsInt(p[2]),d->p[1]^d))); List([1..10^4], n -> A051377(n)); # Muniru A Asiru, Oct 29 2017
  • Haskell
    a051377 n = product $ zipWith sum_e (a027748_row n) (a124010_row n) where
       sum_e p e = sum [p ^ d | d <- a027750_row e]
    -- Reinhard Zumkeller, Mar 13 2012
    
  • Maple
    A051377 := proc(n)
        local a,pe,p,e;
        a := 1;
        for pe in ifactors(n)[2] do
            p := pe[1] ;
            e := pe[2] ;
            add(p^d,d=numtheory[divisors](e)) ;
            a := a*% ;
        end do:
        a ;
    end proc:
    seq(A051377(n),n=1..100) ; # R. J. Mathar, Oct 05 2017
  • Mathematica
    a[n_] := Times @@ (Sum[ First[#]^d, {d, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 71}] (* Jean-François Alcover, Apr 06 2012 *)
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],sumdiv(f[i,2],d,f[i,1]^d)) \\ Charles R Greathouse IV, Nov 22 2011
    
  • PARI
    ediv(n,f=factor(n))=my(v=List(),D=apply(divisors,f[,2]~),t=#f~); forvec(u=vector(t,i,[1,#D[i]]), listput(v,prod(j=1,t,f[j,1]^D[j][u[j]]))); Set(v)
    a(n)=vecsum(ediv(n)) \\ Charles R Greathouse IV, Oct 29 2018
    

Formula

Multiplicative with a(p^e) = Sum_{d|e} p^d. - Vladeta Jovovic, Apr 23 2002
a(n) = A126164(n)+n. - R. J. Mathar, Oct 05 2017
The average order of a(n) is Dn + O(n^e) for any e > 0, due to Fabrykowski & Subbarao, where D is about 0.568. (D >= 0.5 since a(n) >= n.) - Charles R Greathouse IV, Sep 22 2023

Extensions

More terms from Jud McCranie, May 29 2000
Definition corrected by Jaroslav Krizek, Feb 27 2009

A054979 e-perfect numbers: numbers k such that the sum of the e-divisors (exponential divisors) of k equals 2*k.

Original entry on oeis.org

36, 180, 252, 396, 468, 612, 684, 828, 1044, 1116, 1260, 1332, 1476, 1548, 1692, 1800, 1908, 1980, 2124, 2196, 2340, 2412, 2556, 2628, 2700, 2772, 2844, 2988, 3060, 3204, 3276, 3420, 3492, 3636, 3708, 3852, 3924, 4068, 4140, 4284, 4572, 4716
Offset: 1

Views

Author

Jud McCranie, May 29 2000

Keywords

Comments

The e-divisors (or exponential divisors) of x=Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.
The number of e-divisors for n is A049419(n). - Jon Perry, Nov 13 2012
Conjecture: Every e-perfect number is divisible by 36, see A219016. - Jon Perry, Nov 13 2012

Examples

			The e-divisors of 36 are 2*3, 4*3, 2*9 and 4*9 and the sum of these = 2*36, so 36 is e-perfect.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B17, pp. 110-111.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, p. 116-117.

Crossrefs

Programs

  • Maple
    for n from 1 do
        if A051377(n) = 2*n then
            printf("%d,\n",n) ;
        end if;
    end do: # R. J. Mathar, Oct 05 2017
  • Mathematica
    ee[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; Select[Range[5000], ee[#] == 2 # &] (* T. D. Noe, Nov 14 2012 *)
  • PARI
    is(n)=my(f=factor(n));prod(i=1,#f[,1],sumdiv(f[i,2],d, f[i,1]^d))==2*n \\ Charles R Greathouse IV, Nov 22 2011

Formula

{n: A051377(n) = 2*n}. - R. J. Mathar, Oct 05 2017

A322791 Irregular triangle read by rows in which the n-th row lists the exponential divisors (or e-divisors) of n.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 7, 2, 8, 3, 9, 10, 11, 6, 12, 13, 14, 15, 2, 4, 16, 17, 6, 18, 19, 10, 20, 21, 22, 23, 6, 24, 5, 25, 26, 3, 27, 14, 28, 29, 30, 31, 2, 32, 33, 34, 35, 6, 12, 18, 36, 37, 38, 39, 10, 40, 41, 42, 43, 22, 44, 15, 45, 46, 47, 6, 12, 48, 7, 49
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2018

Keywords

Examples

			The table starts
  1
  2
  3
  2, 4
  5
  6
  7
  2, 8
  3, 9
  10
		

Crossrefs

Cf. A049419 (row lengths), A051377 (row sums).
Cf. A027750 (all divisors), A077609 (infinitary), A077610 (unitary), A222266 (bi-unitary).

Programs

  • Maple
    A322791 := proc(n)
        local expundivs ,d,isue,p,ai,bi;
        expudvs := {} ;
        for d in numtheory[divisors](n) do
            isue := true ;
            for p in numtheory[factorset](n) do
                ai := padic[ordp](n,p) ;
                bi := padic[ordp](d,p) ;
                if bi > 0 then
                    if modp(ai,bi) <>0 then
                        isue := false;
                    end if;
                else
                    isue := false ;
                end if;
            end do;
            if isue then
                expudvs := expudvs union {d} ;
            end if;
        end do:
        sort(expudvs) ;
    end proc:
    seq(op(A322791(n)),n=1..40) ; # R. J. Mathar, Mar 06 2023
  • Mathematica
    divQ[n_, m_] := (n > 0 && m>0 && Divisible[n, m]); expDivQ[n_, d_] := Module[ {f=FactorInteger[n]}, And@@MapThread[divQ, {f[[;; , 2]], IntegerExponent[ d, f[[;; , 1]]]} ]]; expDivs[1]={1}; expDivs[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d, expDivQ[n, #]&] ]; Table[expDivs[n], {n, 1, 50}] // Flatten
  • PARI
    isexpdiv(f, d) = { my(e); for (i=1, #f~, e = valuation(d, f[i, 1]); if(!e || (e && f[i, 2] % e), return(0))); 1; }
    row(n) = {my(d = divisors(n), f = factor(n), ediv = []); if(n == 1, return([1])); for(i=2, #d, if(isexpdiv(f, d[i]), ediv = concat(ediv, d[i]))); ediv; } \\ Amiram Eldar, Mar 27 2023

A129575 Exponential abundant numbers: integers k for which A126164(k) > k, or equivalently for which A051377(k) > 2k.

Original entry on oeis.org

900, 1764, 3600, 4356, 4500, 4900, 6084, 6300, 7056, 8100, 8820, 9900, 10404, 11700, 12348, 12996, 14700, 15300, 17100, 19044, 19404, 20700, 21780, 22500, 22932, 25200, 26100, 27900, 29988, 30276, 30420, 30492, 31500, 33300, 33516, 34596, 35280, 36900, 38700, 39600
Offset: 1

Views

Author

Ant King, Apr 28 2007

Keywords

Comments

There are only 52189 exponential abundant numbers less than 50 million, which suggests that these account for approximately 0.1% of all integers.
Includes 36*m for all m coprime to 6 that are not squarefree. - Robert Israel, Feb 19 2019
The asymptotic density of this sequence is Sum_{n>=1} f(A328136(n)) = 0.001043673..., where f(n) = (6/(Pi^2*n))*Product_{prime p|n}(p/(p+1)). - Amiram Eldar, Sep 02 2022

Examples

			The third integer that is exceeded by its proper exponential divisor sum is 3600. Hence a(3) = 3600.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n)  local L,m,i,j;
      L:= ifactors(n)[2];
      m:= nops(L);
      mul(add(L[i][1]^j, j=numtheory:-divisors(L[i][2])),i=1..m)>2*n
    end proc:
    select(filter, [$1..10^5]); # Robert Israel, Feb 19 2019
  • Mathematica
    ExponentialDivisors[1]={1};ExponentialDivisors[n_]:=Module[{}, {pr,pows}=Transpose@FactorInteger[n];divpowers=Distribute[Divisors[pows],List];Sort[Times@@(pr^Transpose[divpowers])]];properexponentialdivisorsum[k_]:=Plus@@ExponentialDivisors[k]-k;Select[Range[5 10^4],properexponentialdivisorsum[ # ]># &]
    f[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[40000], esigma[#] > 2*# &] (* Amiram Eldar, May 06 2025 *)
  • PARI
    isok(k) = {my(f = factor(k)); prod(i = 1, #f~, sumdiv(f[i, 2], d, f[i, 1]^d)) > 2*k;} \\ Amiram Eldar, May 06 2025
Showing 1-10 of 54 results. Next