cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A333931 Recursive highly composite numbers: numbers with a record number of recursive divisors (A282446).

Original entry on oeis.org

1, 2, 4, 6, 12, 30, 36, 60, 180, 420, 900, 1260, 4620, 6300, 13860, 44100, 55440, 69300, 180180, 485100, 720720, 900900, 2882880, 3063060, 6306300, 12252240, 15315300, 49008960, 58198140, 107207100, 232792560, 290990700, 931170240, 1163962800, 2036934900, 4655851200
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2020

Keywords

Comments

The corresponding record values are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 48, 54, ...

Crossrefs

Subsequence of A025487.
Cf. A282446.
Analogous sequences: A002182 (highly composite), A002110 (unitary), A037992 (infinitary), A293185 (bi-unitary), A309141 (nonunitary), A318278 (exponential).

Programs

  • Mathematica
    recDivNum[1] = 1; recDivNum[n_] := recDivNum[n] = Times @@ (1 + recDivNum/@ (Last /@ FactorInteger[n])); rm = 0; s = {}; Do[r = recDivNum[n]; If[r > rm, rm = r; AppendTo[s, n]], {n, 1, 10^4}]; s

A333926 The sum of recursive divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 11, 13, 18, 12, 28, 14, 24, 24, 23, 18, 39, 20, 42, 32, 36, 24, 44, 31, 42, 31, 56, 30, 72, 32, 35, 48, 54, 48, 91, 38, 60, 56, 66, 42, 96, 44, 84, 78, 72, 48, 92, 57, 93, 72, 98, 54, 93, 72, 88, 80, 90, 60, 168, 62, 96, 104, 79, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2020

Keywords

Comments

The definition of recursive divisors and the number of recursive divisors of n are in A282446.
First differs from A051378 at n = 256.

Examples

			The recursive divisors of 8 are 1, 2 and 8, therefore a(8) = 1 + 2 + 8 = 11.
		

Crossrefs

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100]

Formula

Multiplicative with a(p^k) = 1 + Sum_{d recursive divisor of k} p^d.
a(n) <= A051378(n) <= A000203(n).

A353898 a(n) is the number of divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 4, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, May 10 2022

Keywords

Comments

First differs from A049599 and A282446 at n=32.

Examples

			The divisors of 8 are 1, 2 = 2^1, 4 = 2^2 and 8 = 2^3. 3 of these divisors, 1, 2 and 4, are in A138302. Therefore, a(8) = 3.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[Log2[e]] + 2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

Formula

Multiplicative with a(p^e) = floor(log_2(e)) + 2.
a(n) > 1 for n > 1 and a(n) = 2 if and only if n is a prime.
a(n) = A000005(n) if and only if n is cubefree (A004709).

A366901 The number of exponentially odious divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 4, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 27 2023

Keywords

Comments

First differs from A049599 and A282446 at n = 32, from A365551 at n = 64, and from A353898 at n = 128.
The number of divisors of n that are exponentially odious numbers (A270428), i.e., numbers having only odious (A000069) exponents in their canonical prime factorization.
The sum of these divisors is A366903(n) and the largest of them is A366905(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[e/2] + If[OddQ[e] || EvenQ[DigitCount[e + 1, 2, 1]], 1, 0] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = 1 + n\2 + (n%2 || hammingweight(n+1)%2==0); \\ after Charles R Greathouse IV at A115384
    a(n) = vecprod(apply(x -> s(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A115384(e) + 1.
a(n) <= A000005(n), with equality if and only if n is a cubefree number (A004709).

A318672 Denominators of the sequence whose Dirichlet convolution with itself yields A049599, number of (1+e)-divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2018

Keywords

Comments

The sequence seems to give the denominators of a few other similarly constructed rational valued sequences obtained as "Dirichlet Square Roots" (possibly of A282446 and A318469).

Crossrefs

Cf. A049599, A318671 (numerators), A318673.

Programs

  • PARI
    up_to = (2^16)+1;
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA049599(n) = factorback(apply(e -> (1+numdiv(e)),factor(n)[,2]));
    v318671_62 = DirSqrt(vector(up_to, n, A049599(n)));
    A318671(n) = numerator(v318671_62[n]);
    A318672(n) = denominator(v318671_62[n]);
    A318673(n) = valuation(A318672(n),2);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A049599(n) - Sum_{d|n, d>1, d 1.
a(n) = 2^A318673(n).

A287957 Table read by antidiagonals: T(n, k) = greatest common recursive divisor of n and k; n > 0 and k > 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 2, 5, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 7, 2, 1
Offset: 1

Views

Author

Rémy Sigrist, Jun 03 2017

Keywords

Comments

We use the definition of recursive divisor given in A282446.
More informally, the prime tower factorization of T(n, k) is the intersection of the prime tower factorizations of n and k (the prime tower factorization of a number is defined in A182318).
This sequence has connections with the classical GCD (A003989).
For any i > 0, j > 0 and k > 0:
- T(i, j) = 1 iff gcd(i, j) = 1,
- A007947(T(i, j)) = A007947(gcd(i, j)),
- T(i, j) >= 1,
- T(i, j) <= min(i, j),
- T(i, j) <= gcd(i, j),
- T(i, 1) = 1,
- T(i, i) = i,
- T(i, j) = T(j, i) (the sequence is commutative),
- T(i, T(j, k)) = T(T(i, j), k) (the sequence is associative),
- T(i, i*j) <= i,
- if gcd(i, j) = 1 then T(i*j, k) = T(i, k) * T(j, k) (the sequence is multiplicative),
- T(i, 2*i) = A259445(i).
See also A287958 for the LCM equivalent.

Examples

			Table starts:
n\k|    1   2   3   4   5   6   7   8   9   10
---+-----------------------------------------------
1  |    1   1   1   1   1   1   1   1   1    1  ...
2  |    1   2   1   2   1   2   1   2   1    2  ...
3  |    1   1   3   1   1   3   1   1   3    1  ...
4  |    1   2   1   4   1   2   1   2   1    2  ...
5  |    1   1   1   1   5   1   1   1   1    5  ...
6  |    1   2   3   2   1   6   1   2   3    2  ...
7  |    1   1   1   1   1   1   7   1   1    1  ...
8  |    1   2   1   2   1   2   1   8   1    2  ...
9  |    1   1   3   1   1   3   1   1   9    1  ...
10 |    1   2   1   2   5   2   1   2   1   10  ...
...
T(4, 8) = T(2^2, 2^3) = 2.
		

Crossrefs

Programs

  • PARI
    T(n,k) = my (g=factor(gcd(n,k))); return (prod(i=1, #g~, g[i,1]^T(valuation(n, g[i,1]), valuation(k, g[i,1]))))

A287958 Table read by antidiagonals: T(n, k) = least recursive multiple of n and k; n > 0 and k > 0.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 6, 6, 4, 5, 4, 3, 4, 5, 6, 10, 12, 12, 10, 6, 7, 6, 15, 4, 15, 6, 7, 8, 14, 6, 20, 20, 6, 14, 8, 9, 8, 21, 12, 5, 12, 21, 8, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 10, 9, 64, 35, 6, 35, 64, 9, 10, 11, 12, 22, 30, 36, 40, 42, 42, 40
Offset: 1

Views

Author

Rémy Sigrist, Jun 03 2017

Keywords

Comments

We say that m is a recursive multiple of d iff d is a recursive divisor of m (as described in A282446).
More informally, the prime tower factorization of T(n, k) is the union of the prime tower factorizations of n and k (the prime tower factorization of a number is defined in A182318).
This sequence has connections with the classical LCM (A003990).
For any i > 0, j > 0 and k > 0:
- A007947(T(i, j)) = A007947(lcm(i, j)),
- T(i, j) >= 1,
- T(i, j) >= max(i, j),
- T(i, j) >= lcm(i, j),
- T(i, 1) = i,
- T(i, i) = i,
- T(i, j) = T(j, i) (the sequence is commutative),
- T(i, T(j, k)) = T(T(i, j), k) (the sequence is associative),
- T(i, i*j) >= i*j,
- if gcd(i, j) = 1 then T(i, j) = i*j.
See also A287957 for the GCD equivalent.

Examples

			Table starts:
n\k|     1   2   3   4   5   6   7   8   9  10
---+-----------------------------------------------
1  |     1   2   3   4   5   6   7   8   9  10  ...
2  |     2   2   6   4  10   6  14   8  18  10  ...
3  |     3   6   3  12  15   6  21  24   9  30  ...
4  |     4   4  12   4  20  12  28  64  36  20  ...
5  |     5  10  15  20   5  30  35  40  45  10  ...
6  |     6   6   6  12  30   6  42  24  18  30  ...
7  |     7  14  21  28  35  42   7  56  63  70  ...
8  |     8   8  24  64  40  24  56   8  72  40  ...
9  |     9  18   9  36  45  18  63  72   9  90  ...
10 |    10  10  30  20  10  30  70  40  90  10  ...
...
T(4, 8) = T(2^2, 2^3) = 2^(2*3) = 2^6 = 64.
		

Crossrefs

Programs

  • PARI
    T(n,k) = if (n*k==0, return (max(n,k))); my (g=factor(lcm(n,k))); return (prod(i=1, #g~, g[i,1]^T(valuation(n, g[i,1]), valuation(k, g[i,1]))))

A328880 If n = Product (p_j^k_j) then a(n) = Product (a(pi(p_j)) + 1), where pi = A000720, with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 6, 3, 2, 3, 8, 5, 6, 7, 6, 12, 2, 4, 6, 3, 8, 9, 10, 4, 6, 4, 14, 3, 6, 9, 24, 6, 2, 15, 8, 12, 6, 7, 6, 21, 8, 8, 18, 7, 10, 12, 8, 13, 6, 3, 8, 12, 14, 3, 6, 20, 6, 9, 18, 5, 24, 7, 12, 9, 2, 28, 30, 4, 8, 12, 24, 9, 6, 10, 14, 12, 6, 15, 42, 11, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 29 2019

Keywords

Examples

			a(36) = 6 because 36 = 2^2 * 3^2 = prime(1)^2 * prime(2)^2 and (a(1) + 1) * (a(2) + 1) = (1 + 1) * (2 + 1) = 6.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ (a[PrimePi[#[[1]]]] + 1 & /@ FactorInteger[n]); Table[a[n], {n, 1, 80}]
  • PARI
    a(n)={my(f=factor(n)[,1]); prod(i=1, #f, 1 + a(primepi(f[i])))} \\ Andrew Howroyd, Oct 29 2019

Formula

a(n) = a(prime(n)) - 1.

A333927 Recursive perfect numbers: numbers k such that A333926(k) = 2*k.

Original entry on oeis.org

6, 28, 264, 1104, 3360, 75840, 151062912, 606557952, 2171581440
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2020

Keywords

Comments

Since a recursive divisor is also a (1+e)-divisor (see A049599), then the first 6 terms and other terms of this sequence coincide with those of A049603.

Examples

			264 is a term since the sum of its recursive divisors is 1 + 2 + 3 + 6 + 8 + 11 + 22 + 24 + 33 + 66 + 88 + 264 = 528 = 2 * 264.
		

Crossrefs

Analogous sequences: A000396, A002827 (unitary), A007357 (infinitary), A054979 (exponential), A064591 (nonunitary).

Programs

  • Mathematica
    recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recDivSum[1] = 1; recDivSum[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^5], recDivSum[#] == 2*# &]

A349284 Numbers k such that A051378(k) > 2*k and A333926(k) <= 2*k.

Original entry on oeis.org

126720, 134400, 149760, 188160, 195840, 456960, 510720, 549120, 618240, 718080, 748800, 779520, 802560, 833280, 940800, 979200, 994560, 1094400, 1102080, 1155840, 1263360, 1324800, 1393920, 1424640, 1585920, 1639680, 1670400, 1785600, 1800960, 1908480, 1946880
Offset: 1

Views

Author

Amiram Eldar, Nov 13 2021

Keywords

Comments

(1+e)-abundant numbers are numbers k such that A051378(k) > 2*k, i.e., numbers k whose sum of (1+e)-divisors exceeds 2*k.
Since all the recursive divisors (see A282446) of a number are also its (1+e)-divisors, the sequence of (1+e)-abundant numbers includes all the recursive abundant numbers (A333928). The first 21387 (1+e)-abundant numbers are also recursive abundant numbers. Therefore, this sequence includes only the (1+e)-abundant numbers that are not recursive abundant numbers.

Examples

			126720 is a term since A051378(126720) = 261144 > 2*126720 = 253440 and A333926(126720) = 246168 < 253440.
		

Crossrefs

Programs

  • Mathematica
    oesigma[1] = 1; oesigma[n_] := Times @@ (1 + Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; recDivQ[n_, 1] = True; recDivQ[n_, d_] := recDivQ[n, d] = Divisible[n, d] && AllTrue[FactorInteger[d], recDivQ[IntegerExponent[n, First[#]], Last[#]] &]; recDivs[n_] := Select[Divisors[n], recDivQ[n, #] &]; f[p_, e_] := 1 + Total[p^recDivs[e]]; recsigma[1] = 1; recsigma[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[10^6], oesigma[#] > 2*# && recsigma[#] <= 2*# &]
Showing 1-10 of 12 results. Next