A328796 Expansion of chi(x) / chi(-x^6) in powers of x where chi() is a Ramanujan theta function.
1, 1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 8, 8, 11, 12, 12, 16, 17, 18, 23, 25, 26, 32, 35, 37, 45, 49, 52, 62, 67, 72, 85, 92, 98, 114, 124, 133, 153, 166, 178, 203, 220, 236, 268, 290, 311, 350, 379, 407, 456, 493, 529, 589, 636, 683, 758, 818, 877
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^3 + x^4 + x^5 + 2*x^6 + 2*x^7 + 2*x^8 + 3*x^9 + ... G.f. = q^5 + q^29 + q^77 + q^101 + q^125 + 2*q^149 + 2*q^173 + ...
Links
- Cristina Ballantine and Mircea Merca, 6-regular partitions: new combinatorial properties, congruences, and linear inequalities, arXiv:2302.01253 [math.NT], 2023.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^6, x^6], {x, 0, n}];
-
PARI
{a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^12 + A)) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)), n))};
Formula
Expansion of q^(-5/24) * (eta(q^2)^2 * eta(q^12)) / (eta(q) * eta(q^4) * eta(q^6)) in power of q.
Euler transform of period 12 sequence [1, -1, 1, 0, 1, 0, 1, 0, 1, -1, 1, 0, ...].
G.f.: Product_{k>=1} (1 + x^(6*k))/(1 + (-x)^k) = Product_{k>=1} (1 + x^(2*k-1)) * (1 + x^(6*k)).
A261736(n) = (-1)^n * a(n).
a(n) ~ exp(sqrt(2*n)*Pi/3) / (2^(7/4)*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 31 2019
Comments