cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A328796 Expansion of chi(x) / chi(-x^6) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 8, 8, 11, 12, 12, 16, 17, 18, 23, 25, 26, 32, 35, 37, 45, 49, 52, 62, 67, 72, 85, 92, 98, 114, 124, 133, 153, 166, 178, 203, 220, 236, 268, 290, 311, 350, 379, 407, 456, 493, 529, 589, 636, 683, 758, 818, 877
Offset: 0

Views

Author

Michael Somos, Oct 27 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square is A328790.
G.f. is a period 1 Fourier series which satisfies f(-1 / (1728 t)) = 2^(-1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A328880.

Examples

			G.f. = 1 + x + x^3 + x^4 + x^5 + 2*x^6 + 2*x^7 + 2*x^8 + 3*x^9 + ...
G.f. = q^5 + q^29 + q^77 + q^101 + q^125 + 2*q^149 + 2*q^173 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^6, x^6], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^12 + A)) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)), n))};

Formula

Expansion of q^(-5/24) * (eta(q^2)^2 * eta(q^12)) / (eta(q) * eta(q^4) * eta(q^6)) in power of q.
Euler transform of period 12 sequence [1, -1, 1, 0, 1, 0, 1, 0, 1, -1, 1, 0, ...].
G.f.: Product_{k>=1} (1 + x^(6*k))/(1 + (-x)^k) = Product_{k>=1} (1 + x^(2*k-1)) * (1 + x^(6*k)).
A261736(n) = (-1)^n * a(n).
a(n) ~ exp(sqrt(2*n)*Pi/3) / (2^(7/4)*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 31 2019

A333267 If n = Product (p_j^k_j) then a(n) = Product (a(pi(p_j)) * k_j), where pi = A000720.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 2, 1, 4, 2, 2, 3, 2, 2, 1, 2, 3, 2, 1, 3, 4, 1, 1, 1, 5, 1, 2, 2, 4, 2, 3, 1, 3, 1, 2, 2, 2, 2, 2, 1, 4, 4, 2, 2, 2, 4, 3, 1, 6, 3, 1, 2, 2, 2, 1, 4, 6, 1, 1, 3, 4, 2, 2, 2, 6, 2, 2, 2, 6, 2, 1, 1, 4, 4, 1, 2, 4, 2, 2, 1, 3, 3, 2, 2, 4, 1, 1, 3, 5, 2, 4, 2, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 13 2020

Keywords

Examples

			a(36) = a(2^2 * 3^2) = a(prime(1)^2 * prime(2)^2) = a(1) * 2 * a(2) * 2 = 4.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          mul(a(numtheory[pi](i[1]))*i[2], i=ifactors(n)[2])
        end:
    seq(a(n), n=1..120);  # Alois P. Heinz, Mar 13 2020
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Times @@ (a[PrimePi[#[[1]]]] #[[2]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 100}]

Formula

a(n) = A005361(n) * Product_{p|n, p prime} a(pi(p)).
a(n) = a(prime(n)).
a(p^k) = k * a(p), where p is prime.
a(A002110(n)) = Product_{k=1..n} a(k).

A341041 If n = Product (p_j^k_j) then a(n) = 1 + Product (a(pi(p_j))), where pi = A000720, with a(1) = 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 3, 2, 3, 4, 5, 3, 4, 3, 7, 2, 4, 3, 3, 4, 5, 5, 4, 3, 4, 4, 3, 3, 5, 7, 6, 2, 9, 4, 7, 3, 4, 3, 7, 4, 5, 5, 4, 5, 7, 4, 8, 3, 3, 4, 7, 4, 3, 3, 13, 3, 5, 5, 5, 7, 4, 6, 5, 2, 10, 9, 4, 4, 7, 7, 5, 3, 6, 4, 7, 3, 9, 7, 6, 4, 3, 5, 5, 5, 10, 4, 9, 5, 4, 7, 7, 4, 11, 8, 7, 3, 5, 3, 9, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 03 2021

Keywords

Examples

			a(45) = a(3^2 * 5) = a(prime(2)^2 * prime(3)) = 1 + a(2) * a(3) = 1 + 2 * 3 = 7.
		

Crossrefs

Programs

  • Maple
    a:= n-> `if`(n=1, 1, 1+mul(a(numtheory[pi](i[1])), i=ifactors(n)[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 03 2021
  • Mathematica
    a[1] = 1; a[n_] := a[n] = 1 + Times @@ (a[PrimePi[#[[1]]]] & /@ FactorInteger[n]); Table[a[n], {n, 100}]

Formula

a(n) = a(prime(n)^k) - 1 for k > 0.
a(2*n) = a(n) for n > 1.
Showing 1-3 of 3 results.