cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A353899 Indices of records in A353898.

Original entry on oeis.org

1, 2, 4, 6, 12, 30, 36, 60, 180, 420, 900, 1260, 4620, 6300, 13860, 44100, 55440, 69300, 180180, 485100, 720720, 900900, 3063060, 6306300, 12252240, 15315300, 58198140, 107207100, 232792560, 290990700, 1163962800, 2036934900, 5354228880, 6692786100, 22406283900
Offset: 1

Views

Author

Amiram Eldar, May 10 2022

Keywords

Comments

First differs from A333931 at n=23.
The corresponding record values are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 48, 54, 72, 81, 96, 108, 144, 162, ... (see the link for more values).

Crossrefs

Subsequence of A025487 and A138302.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386.

Programs

  • Mathematica
    f[p_, e_] := Floor[Log2[e]] + 2; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; sm = 0; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 10^6}]; seq

A353897 a(n) is the largest divisor of n whose exponents in its prime factorization are all powers of 2 (A138302).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 9, 28, 29, 30, 31, 16, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 18, 55, 28, 57, 58, 59, 60, 61, 62, 63, 16, 65, 66, 67, 68
Offset: 1

Views

Author

Amiram Eldar, May 10 2022

Keywords

Examples

			a(27) = 9 since 9 = 3^2 is the largest divisor of 27 with an exponent in its prime factorization, 2, that is a power of 2.
		

Crossrefs

Similar sequences: A000265, A007947, A008834, A055071, A350390.

Programs

  • Mathematica
    f[p_, e_] := p^(2^Floor[Log2[e]]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

Formula

Multiplicative with a(p^e) = p^(2^floor(log_2(e))).
a(n) = n if and only if n is in A138302.
Sum_{k=1..n} a(k) ~ c*n^2, where c = 0.4616988732... = (1/2) * Product_{p prime} (1 + Sum_{k>=1} (p^f(k) - p^(f(k-1)+1))/p^(2*k)), f(k) = 2^floor(log_2(k)) and f(0) = 0.

A353900 a(n) is the sum of divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 7, 13, 18, 12, 28, 14, 24, 24, 23, 18, 39, 20, 42, 32, 36, 24, 28, 31, 42, 13, 56, 30, 72, 32, 23, 48, 54, 48, 91, 38, 60, 56, 42, 42, 96, 44, 84, 78, 72, 48, 92, 57, 93, 72, 98, 54, 39, 72, 56, 80, 90, 60, 168, 62, 96, 104, 23, 84, 144
Offset: 1

Views

Author

Amiram Eldar, May 10 2022

Keywords

Crossrefs

Similar sequences: A034448, A048146, A051377, A188999.

Programs

  • Mathematica
    f[p_, e_] := 1 + Sum[p^(2^k), {k, 0, Floor[Log2[e]]}]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + sum(k = 0, logint(f[i,2], 2), f[i,1]^(2^k)));} \\ Amiram Eldar, Nov 19 2022

Formula

Multiplicative with a(p^e) = 1 + Sum_{k=0..floor(log_2(e))} p^(2^k).
a(n) = A000203(n) if and only if n is cubefree (A004709).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((1-1/p)*(1 + Sum_{k>=1} (Sum_{j=0..floor(log_2(k))} p^(2^j)/p^(2*k)))) = 0.7176001667... . - Amiram Eldar, Nov 19 2022

A366902 The number of exponentially evil divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 27 2023

Keywords

Comments

First differs from A050361 at n = 128.
The number of divisors of n that are exponentially evil numbers (A262675), i.e., numbers having only evil (A001969) exponents in their canonical prime factorization.
The sum of these divisors is A366904(n) and the largest of them is A366906(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[e/2] + If[OddQ[e] || OddQ[DigitCount[e + 1, 2, 1]], 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = n\2 + (n%2 || hammingweight(n+1)%2); \\ after Charles R Greathouse IV at A159481
    a(n) = vecprod(apply(x -> s(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A159481(e).
a(n) >= 1, with equality if and only if n is a cubefree number (A004709).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} Sum_{k>=1} 1/p^A262675(k) = 1.241359937856... .

A365680 The number of exponentially squarefree divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 5, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 6, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Sep 15 2023

Keywords

Comments

First differs from A252505 at n = 32.
The number of divisors of n that are exponentially squarefree numbers (A209061), i.e., numbers having only squarefree exponents in their canonical prime factorization.
The sum of these divisors is A365682(n) and the largest of them is A365683(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Count[Range[e], ?SquareFreeQ] + 1; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = sum(k=1, n, issquarefree(k)) + 1;
    a(n) = vecprod(apply(x -> s(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A013928(e+1) + 1.
a(n) <= A000005(n), with equality if and only if n is a biquadratefree number (A046100).

A366901 The number of exponentially odious divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 4, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 27 2023

Keywords

Comments

First differs from A049599 and A282446 at n = 32, from A365551 at n = 64, and from A353898 at n = 128.
The number of divisors of n that are exponentially odious numbers (A270428), i.e., numbers having only odious (A000069) exponents in their canonical prime factorization.
The sum of these divisors is A366903(n) and the largest of them is A366905(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[e/2] + If[OddQ[e] || EvenQ[DigitCount[e + 1, 2, 1]], 1, 0] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = 1 + n\2 + (n%2 || hammingweight(n+1)%2==0); \\ after Charles R Greathouse IV at A115384
    a(n) = vecprod(apply(x -> s(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A115384(e) + 1.
a(n) <= A000005(n), with equality if and only if n is a cubefree number (A004709).

A385042 The number of unitary divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 1, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 2, 2, 4, 1, 4, 2, 8, 2, 1, 4, 4, 4, 4, 2, 4, 4, 2, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 2, 4, 4, 2, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 2, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

First differs from A367515 at n = 128.
The sum of these divisors is A385043(n), and the largest of them is A367168(n).

Crossrefs

The unitary analog of A353898.
The number of unitary divisors of n that are: A000034 (power of 2), A055076 (exponentially odd), A056624 (square), A056671 (squarefree), A068068 (odd), A323308 (powerful), A365498 (cubefree), A365499 (biquadratefree), A368248 (cubefull), A380395 (cube), A382488 (3-smooth), this sequence (exponentially 2^n), A385044 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := Boole[e == 2^IntegerExponent[e, 2]] + 1; a[ 1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x == 1<
    				

Formula

Multiplicative with a(p^e) = A209229(e) + 1.
a(n) <= A034444(n), with equality if and only if n is in A138302.
a(n) <= A353898(n), with equality if and only if n is squarefree (A005117).

A365551 The number of exponentially odd divisors of the smallest exponentially odd number divisible by n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 5, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Sep 08 2023

Keywords

Comments

First differs from A049599 and A282446 at n = 32, and from A353898 at n = 64.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Ceiling[(e + 3)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> ceil((x+3)/2), factor(n)[, 2]));

Formula

a(n) = A322483(A356191(n)).
Multiplicative with a(p^e) = ceiling((e+3)/2).
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)).
From Vaclav Kotesovec, Sep 09 2023: (Start)
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).
Dirichlet g.f.: zeta(s)^2 * zeta(2*s) * f(s).
Sum_{k=1..n} a(k) ~ (Pi^2 * f(1) * n / 6) * (log(n) + 2*gamma - 1 + 12*zeta'(2)/Pi^2 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.5358961538283379998085026313185459506482223745141452711510108346133288119...,
f'(1) = f(1) * Sum_{p prime} (-4 + 3*p + 2*p^2) * log(p) / (1 - p - p^2 + p^4) = f(1) * 1.452592479445159559037143959382854734148246511441192913672347667991...
and gamma is the Euler-Mascheroni constant A001620. (End)
Showing 1-8 of 8 results.