cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A366902 The number of exponentially evil divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 27 2023

Keywords

Comments

First differs from A050361 at n = 128.
The number of divisors of n that are exponentially evil numbers (A262675), i.e., numbers having only evil (A001969) exponents in their canonical prime factorization.
The sum of these divisors is A366904(n) and the largest of them is A366906(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[e/2] + If[OddQ[e] || OddQ[DigitCount[e + 1, 2, 1]], 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = n\2 + (n%2 || hammingweight(n+1)%2); \\ after Charles R Greathouse IV at A159481
    a(n) = vecprod(apply(x -> s(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A159481(e).
a(n) >= 1, with equality if and only if n is a cubefree number (A004709).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} Sum_{k>=1} 1/p^A262675(k) = 1.241359937856... .

A367516 The number of unitary divisors of n that are exponentially evil numbers (A262675).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 21 2023

Keywords

Comments

First differs from A359411 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[EvenQ[DigitCount[e, 2, 1]], 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> 2-hammingweight(x)%2, factor(n)[, 2]));
    
  • Python
    from sympy import factorint
    def A367516(n): return 1<Chai Wah Wu, Nov 23 2023

Formula

Multiplicative with a(p^e) = (2-A010060(e)).
a(n) = A034444(n)/A367515(n).
a(n) = 2^A367512(n).
a(n) >= 1, with equality if and only if n is an exponentially odious number (A270428).
a(n) <= A034444(n), with equality if and only if n is an exponentially evil number (A262675).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.13071730542774788785..., where f(x) = 1/2 + x + ((1-x)/2) * Product_{k>=0} (1 - x^(2^k)).

A366905 The largest exponentially odious divisor of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 9, 28, 29, 30, 31, 16, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 18, 55, 28, 57, 58, 59, 60, 61, 62, 63, 16, 65, 66, 67, 68
Offset: 1

Views

Author

Amiram Eldar, Oct 27 2023

Keywords

Comments

First differs from A353897 at n = 128.
The largest divisor of n that is an exponentially odious number (A270428).
The number of exponentially odious divisors of n is A366901(n) and their sum is A366903(n).

Crossrefs

Similar sequences: A353897, A365683, A366906.

Programs

  • Mathematica
    maxOdious[e_] := Module[{k = e}, While[EvenQ[DigitCount[k, 2, 1]], k--]; k]; f[p_, e_] := p^maxOdious[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = {my(k = n); while(!(hammingweight(k)%2), k--); k;}
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2]));}

Formula

Multiplicative with a(p^e) = p^max{k=1..e, k odious}.
a(n) <= n, with equality if and only if n is exponentially odious number (A270428).
Sum_{k=1..n} a(k) ~ c*n^2, where c = (1/2) * Product_{p prime} (1 + Sum_{e>=1} (p^f(e) - p^(f(e-1)+1))/p^(2*e)) = 0.4636829525..., f(e) = max{k=1..e, k odious} for e >= 1, and f(0) = 0.

A366903 The sum of exponentially odious divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 7, 13, 18, 12, 28, 14, 24, 24, 23, 18, 39, 20, 42, 32, 36, 24, 28, 31, 42, 13, 56, 30, 72, 32, 23, 48, 54, 48, 91, 38, 60, 56, 42, 42, 96, 44, 84, 78, 72, 48, 92, 57, 93, 72, 98, 54, 39, 72, 56, 80, 90, 60, 168, 62, 96, 104, 23, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, Oct 27 2023

Keywords

Comments

First differs from A353900 at n = 128.
The number of these divisors is A366901(n) and the largest of them is A366905(n).

Crossrefs

Similar sequences: A353900, A365682, A366904.

Programs

  • Mathematica
    f[p_, e_] := 1 + Total[p^Select[Range[e], OddQ[DigitCount[#, 2, 1]] &]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + sum(k = 1, f[i, 2], (hammingweight(k)%2) * f[i, 1]^k));}

Formula

Multiplicative with a(p^e) = 1 + Sum_{k = 1..e, k is odious} p^k.
a(n) <= A000203(n), with equality if and only if n is a cubefree number (A004709).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1-1/p)*(1 + Sum_{k>=1} a(p^k)/p^(2*k)) = 0.721190607... .

A367514 The exponentially odious part of n: the largest unitary divisor of n that is an exponentially odious number (A270428).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Amiram Eldar, Nov 21 2023

Keywords

Comments

First differs from A056192 at n = 32, and from A270418 and A367168 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(e*ThueMorse[e]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(hammingweight(f[i, 2])%2, f[i, 1]^f[i, 2], 1));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A367514(n): return prod(p**e for p, e in factorint(n).items() if e.bit_count()&1) # Chai Wah Wu, Nov 23 2023

Formula

Multiplicative with a(p^e) = p^(e*A010060(e)) = p^A102392(e).
a(n) = n/A367513(n).
A001221(a(n)) = A293439(n).
A034444(a(n)) = A367515(n).
a(n) >= 1, with equality if and only if n is an exponentially evil number (A262675).
a(n) <= n, with equality if and only if n is an exponentially odious number (A270428).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 0.88585652437242918295..., and f(x) = (x+2)/(2*(x+1)) + (x/2) * Product_{k>=0} (1 - x^(2^k)).

A367515 The number of unitary divisors of n that are exponentially odious numbers (A270428).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 1, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 2, 2, 4, 1, 4, 2, 8, 2, 1, 4, 4, 4, 4, 2, 4, 4, 2, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 2, 4, 4, 2, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 2, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Nov 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[DigitCount[e, 2, 1]], 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> hammingweight(x)%2+1, factor(n)[, 2]));
    
  • Python
    from sympy import factorint
    def A367515(n): return 1<Chai Wah Wu, Nov 23 2023

Formula

Multiplicative with a(p^e) = A001285(e).
a(n) = A034444(n)/A367516(n).
a(n) = 2^A293439(n).
a(n) >= 1, with equality if and only if n is an exponentially evil number (A262675).
a(n) <= A034444(n), with equality if and only if n is an exponentially odious number (A270428).

A367803 Exponentially evil squares.

Original entry on oeis.org

1, 64, 729, 1024, 4096, 15625, 46656, 59049, 117649, 262144, 531441, 746496, 1000000, 1048576, 1771561, 2985984, 3779136, 4826809, 7529536, 9765625, 11390625, 16000000, 16777216, 24137569, 34012224, 47045881, 60466176, 64000000, 85766121, 113379904, 120472576, 148035889
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2023

Keywords

Comments

Numbers whose prime factorization contains only exponents that are even evil numbers (A125592).
Also, squares of exponentially evil numbers (A262675).
Also, numbers with an equal number of exponentially odious and exponentially evil divisors, i.e., numbers k such that A366901(k) = A366902(k). - Amiram Eldar, Feb 26 2024

Crossrefs

Intersection of A000290 and A262675.

Programs

  • Mathematica
    evilQ[n_] := EvenQ[DigitCount[n, 2, 1]]; Select[Range[10^4]^2, #== 1 || AllTrue[FactorInteger[#][[;;, 2]], evilQ] &]
  • PARI
    isexpevil(n) = {my(f = factor(n)); for (i = 1, #f~, if(hammingweight(f[i, 2])%2, return (0))); 1;}
    is(n) = issquare(n) && isexpevil(n);

Formula

a(n) = A262675(n)^2.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=1} 1/p^A125592(k)) = Product_{p prime} f(1/p) = 1.01833932269003592136..., where f(x) = (2/(1-x^2) + Product_{k>=0} (1 - x^(2^k)) + Product_{k>=0} (1 - (-x)^(2^k)))/4.
Showing 1-7 of 7 results.