cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A366901 The number of exponentially odious divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 6, 3, 4, 3, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 6, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 6, 4, 6, 4, 4, 2, 12, 2, 4, 6, 4, 4, 8, 2, 6, 4, 8, 2, 9, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 27 2023

Keywords

Comments

First differs from A049599 and A282446 at n = 32, from A365551 at n = 64, and from A353898 at n = 128.
The number of divisors of n that are exponentially odious numbers (A270428), i.e., numbers having only odious (A000069) exponents in their canonical prime factorization.
The sum of these divisors is A366903(n) and the largest of them is A366905(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[e/2] + If[OddQ[e] || EvenQ[DigitCount[e + 1, 2, 1]], 1, 0] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = 1 + n\2 + (n%2 || hammingweight(n+1)%2==0); \\ after Charles R Greathouse IV at A115384
    a(n) = vecprod(apply(x -> s(x), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A115384(e) + 1.
a(n) <= A000005(n), with equality if and only if n is a cubefree number (A004709).

A366904 The sum of exponentially evil divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 28, 1, 1, 1, 1, 41, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 28, 1, 9, 1, 1, 1, 1, 1, 1, 1, 105, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 9, 28, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 27 2023

Keywords

Comments

The number of these divisors is A366902(n) and the largest of them is A366906(n).

Crossrefs

Similar sequences: A353900, A365682, A366903.

Programs

  • Mathematica
    f[p_, e_] := 1 + Total[p^Select[Range[e], EvenQ[DigitCount[#, 2, 1]] &]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + sum(k = 1, f[i, 2], !(hammingweight(k)%2) * f[i, 1]^k));}

Formula

Multiplicative with a(p^e) = 1 + Sum_{k = 1..e, k is evil} p^k.
a(n) >= 1, with equality if and only if n is a cubefree number (A004709).

A366905 The largest exponentially odious divisor of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 9, 28, 29, 30, 31, 16, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 18, 55, 28, 57, 58, 59, 60, 61, 62, 63, 16, 65, 66, 67, 68
Offset: 1

Views

Author

Amiram Eldar, Oct 27 2023

Keywords

Comments

First differs from A353897 at n = 128.
The largest divisor of n that is an exponentially odious number (A270428).
The number of exponentially odious divisors of n is A366901(n) and their sum is A366903(n).

Crossrefs

Similar sequences: A353897, A365683, A366906.

Programs

  • Mathematica
    maxOdious[e_] := Module[{k = e}, While[EvenQ[DigitCount[k, 2, 1]], k--]; k]; f[p_, e_] := p^maxOdious[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = {my(k = n); while(!(hammingweight(k)%2), k--); k;}
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2]));}

Formula

Multiplicative with a(p^e) = p^max{k=1..e, k odious}.
a(n) <= n, with equality if and only if n is exponentially odious number (A270428).
Sum_{k=1..n} a(k) ~ c*n^2, where c = (1/2) * Product_{p prime} (1 + Sum_{e>=1} (p^f(e) - p^(f(e-1)+1))/p^(2*e)) = 0.4636829525..., f(e) = max{k=1..e, k odious} for e >= 1, and f(0) = 0.

A367514 The exponentially odious part of n: the largest unitary divisor of n that is an exponentially odious number (A270428).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Amiram Eldar, Nov 21 2023

Keywords

Comments

First differs from A056192 at n = 32, and from A270418 and A367168 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(e*ThueMorse[e]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(hammingweight(f[i, 2])%2, f[i, 1]^f[i, 2], 1));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A367514(n): return prod(p**e for p, e in factorint(n).items() if e.bit_count()&1) # Chai Wah Wu, Nov 23 2023

Formula

Multiplicative with a(p^e) = p^(e*A010060(e)) = p^A102392(e).
a(n) = n/A367513(n).
A001221(a(n)) = A293439(n).
A034444(a(n)) = A367515(n).
a(n) >= 1, with equality if and only if n is an exponentially evil number (A262675).
a(n) <= n, with equality if and only if n is an exponentially odious number (A270428).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 0.88585652437242918295..., and f(x) = (x+2)/(2*(x+1)) + (x/2) * Product_{k>=0} (1 - x^(2^k)).
Showing 1-4 of 4 results.