cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A367802 Exponentially odious squares.

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 625, 676, 784, 841, 900, 961, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 3025, 3249
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2023

Keywords

Comments

First differs from A354180 at n = 226.
Numbers whose prime factorization contains only exponents that are even odious numbers (A128309).
Also, squares of exponentially odious numbers (A270428).

Crossrefs

Intersection of A000290 and A270428.

Programs

  • Mathematica
    odiousQ[n_] := OddQ[DigitCount[n, 2, 1]]; Select[Range[150]^2, AllTrue[FactorInteger[#][[;;, 2]], odiousQ] &]
  • PARI
    isexpodious(n) = {my(f = factor(n)); for (i = 1, #f~, if(!(hammingweight(f[i, 2])%2), return (0))); 1;}
    is(n) = issquare(n) && isexpodious(n);

Formula

a(n) = A270428(n)^2.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=1} 1/p^A128309(k)) = Product_{p prime} f(1/p) = 1.62202332101829028287..., where f(x) = 1 + (2/(1-x^2) - Product_{k>=0} (1 - x^(2^k)) - Product_{k>=0} (1 - (-x)^(2^k)))/4.

A367801 Numbers that are both exponentially odd (A268335) and exponentially odious (A270428).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2023

Keywords

Comments

First differs from its subsequence A005117 at n = 79: a(79) = 128 is not a squarefree number.
First differs from A077377 at n = 63, and from A348506 at n = 68.
Numbers whose prime factorization contains only exponents that are odd odious numbers (A092246).
The asymptotic density of this sequence is Product_{p prime} f(1/p) = 0.61156148494581943994..., where f(x) = (1-x) * (1 + x/(2*(1-x^2)) + (Product_{k>=0} (1-(-x)^(2^k)) - Product_{k>=0} (1-x^(2^k))))/2.

Crossrefs

Intersection of A268335 and A270428.
Subsequences: A005117, A092759.
Cf. A092246.

Programs

  • Mathematica
    odQ[n_] := OddQ[n] && OddQ[DigitCount[n, 2, 1]]; Select[Range[150], AllTrue[FactorInteger[#][[;;, 2]], odQ] &]
  • PARI
    is(n) = {my(f = factor(n)); for (i = 1, #f~, if(!(f[i, 2]%2 && hammingweight(f[i, 2])%2), return (0))); 1;}

A367804 Numbers that are both exponentially odd (A268335) and exponentially evil (A262675).

Original entry on oeis.org

1, 8, 27, 32, 125, 216, 243, 343, 512, 864, 1000, 1331, 1944, 2197, 2744, 3125, 3375, 4000, 4913, 6859, 7776, 9261, 10648, 10976, 12167, 13824, 16807, 17576, 19683, 24389, 25000, 27000, 29791, 30375, 32768, 35937, 39304, 42592, 42875, 50653, 54872, 59319, 64000
Offset: 1

Views

Author

Amiram Eldar, Dec 01 2023

Keywords

Comments

Numbers whose prime factorization contains only exponents that are odd evil numbers (A129771).

Crossrefs

Intersection of A262675 and A268335.
Cf. A129771.

Programs

  • Mathematica
    q[n_] := OddQ[n] && EvenQ[DigitCount[n, 2, 1]]; Select[Range[150], #== 1 || AllTrue[FactorInteger[#][[;;, 2]], q] &]
  • PARI
    is(n) = {my(f = factor(n)); for (i = 1, #f~, if(!(f[i, 2]%2) || hammingweight(f[i, 2])%2, return (0))); 1;}

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=1} 1/p^A129771(k)) = Product_{p prime} f(1/p) = 1.22183814098622400889..., where f(x) = 1 + (2*x/(1-x^2) + Product_{k>=0} (1 - x^(2^k)) - Product_{k>=0} (1 - (-x)^(2^k)))/4.
Showing 1-3 of 3 results.