cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A368979 The number of exponential divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Comments

First differs from A367516 at n = 128, and from A359411 at n = 512.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSigma[0, e/2^IntegerExponent[e, 2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> numdiv(x >> valuation(x, 2)), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A001227(e).
a(n) >= 1, with equality if and only if n is in A138302.
a(n) <= A049419(n), with equality if and only if n is noncomposite (A008578).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=2} (d(k) - d(k-1))/p^k) = 1.13657098749361390865..., where d(k) is the number of odd divisors of k (A001227).

A367516 The number of unitary divisors of n that are exponentially evil numbers (A262675).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 21 2023

Keywords

Comments

First differs from A359411 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[EvenQ[DigitCount[e, 2, 1]], 2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> 2-hammingweight(x)%2, factor(n)[, 2]));
    
  • Python
    from sympy import factorint
    def A367516(n): return 1<Chai Wah Wu, Nov 23 2023

Formula

Multiplicative with a(p^e) = (2-A010060(e)).
a(n) = A034444(n)/A367515(n).
a(n) = 2^A367512(n).
a(n) >= 1, with equality if and only if n is an exponentially odious number (A270428).
a(n) <= A034444(n), with equality if and only if n is an exponentially evil number (A262675).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.13071730542774788785..., where f(x) = 1/2 + x + ((1-x)/2) * Product_{k>=0} (1 - x^(2^k)).

A362852 The number of divisors of n that are both bi-unitary and exponential.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, May 05 2023

Keywords

Comments

First differs from A061704 at n = 128, and from A304327 and abs(A307428) at n = 64.
If e > 0 is the exponent of the highest power of p dividing n (where p is a prime), then for each divisor d of n that is both a bi-unitary and an exponential divisor, the exponent of the highest power of p dividing d is a number k such that k | e but k != e/2.
The least term that is higher than 2 is a(64) = 3.
This sequence is unbounded. E.g., a(2^(2^prime(n))) = prime(n).

Examples

			a(8) = 2 since 8 has 2 divisors that are both bi-unitary and exponential: 2 and 8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSigma[0, e] - If[OddQ[e], 0, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, numdiv(f[i, 2]) - !(f[i, 2] % 2));}

Formula

Multiplicative with a(p^e) = d(e) if e is odd, and d(e)-1 if e is even, where d(k) is the number of divisors of k (A000005).
a(n) = 1 if and only if n is cubefree (A004709).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} (d(k)+(k mod 2)-1)/p^k) = 1.1951330849... .

A363329 a(n) is the number of divisors of n that are both coreful and infinitary.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, May 28 2023

Keywords

Comments

For the definition of a coreful divisor see A307958, and for the definition of an infinitary divisor see A037445.
If e > 0 is the exponent of the highest power of p dividing n (where p is a prime), then for each divisor d of n that is both a coreful and an infinitary divisor, the exponent of the highest power of p dividing d is a number k >= 1 such that the bitwise AND of e and k is equal to k.
The least term that does not equal 1 or 3 is a(128) = 7.
The range of this sequence is A282572.

Examples

			a(8) = 3 since 8 has 4 divisors, 1, 2, 4 and 8, all are infinitary and 3 of them (2, 4 and 8) are also coreful.
		

Crossrefs

Cf. A000120, A005361 (number of coreful divisors), A007947, A037445, A077609, A138302, A282572, A359411.

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1] - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = factorback(apply(x -> 2^hammingweight(x) - 1, factor(n)[, 2]));
    
  • Python
    from math import prod
    from sympy import factorint
    def A363329(n): return prod((1<Chai Wah Wu, Sep 01 2023

Formula

Multiplicative with a(p^e) = 2^A000120(e) - 1.
a(n) = 1 is and only if n is in A138302.
a(n) >= A359411(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (-1/p + (1-1/p)*Product_{k>=0} (1 + 2/p^(2^k))) = 1.29926464312956239535... .

A368168 The number of unitary divisors of n that are cubefull exponentially odd numbers (A335988).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2023

Keywords

Comments

First differs from A359411 and A367516 at n = 64.
Also, the number of unitary divisors of the largest unitary divisor of n that is a cubefull exponentially odd number (A368167).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1 || EvenQ[e], 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 || !(f[i, 2]%2), 1, 2));}

Formula

a(n) = A034444(A368167(n)).
Multiplicative with a(p^e) = 2 if e is odd that is larger than 1, and 1 otherwise.
a(n) >= 1, with equality if and only if n is in A335275.
a(n) <= n, with equality if and only if n is in A335988.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4) = 1.12560687309375943599... .

A382291 a(n) = A037445(n)/A034444(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 21 2025

Keywords

Comments

First differs from A368168 at n = 64, and from A359411, A367516 and A368979 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^(DigitCount[e, 2, 1] - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 105]
  • PARI
    a(n) = vecprod(apply(x -> 1 << (hammingweight(x)-1), factor(n)[, 2]));

Formula

a(n) = 2^A382290(n).
Multiplicative with a(p^e) = 2^(A000120(e)-1) = A048896(e-1) (= A243036(e) for e >= 2).
a(n) >= 1, with equality if and only if n is in A138302.
a(n) = 2 if and only if n is in A382292.

A361810 a(n) is the sum of divisors of n that are both infinitary and exponential.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 10, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 30, 25, 26, 30, 28, 29, 30, 31, 34, 33, 34, 35, 36, 37, 38, 39, 50, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 60, 55, 70, 57, 58, 59, 60, 61, 62, 63, 68, 65, 66, 67, 68
Offset: 1

Views

Author

Amiram Eldar, Mar 25 2023

Keywords

Comments

The number of these divisors is A359411(n).
The indices of records of a(n)/n are the primorials (A002110) cubed, i.e., 1 and the terms of A115964.

Examples

			a(8) = 10 since 8 has 2 divisors that are both infinitary and exponential, 2 and 8, and 2 + 8 = 10.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &, BitOr[#, e] == e &]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(p,e) = sumdiv(e, d, p^d*(bitor(d, e) == e));
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, s(f[i, 1], f[i, 2])); }

Formula

Multiplicative with a(p^e) = Sum_{d|e, bitor(d, e) == e} p^d.
a(n) >= n, with equality if and only if n is in A138302.
limsup_{n->oo} a(n)/n = Product_{p prime} (1 + 1/p^2) = 15/Pi^2 (A082020).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((1 - 1/p)*(1 + Sum_{e>=1} Sum_{d|e, bitor(d, e) == e} p^(d-2*e))) = 0.51015879911178031024... .

A359412 Numbers with a record number of divisors that are both infinitary and exponential.

Original entry on oeis.org

1, 8, 216, 27000, 9261000, 12326391000, 27081081027000, 110924107886592000, 544970142046826496000, 3737950204299182936064000, 45479640135708158783090688000, 1109202943269786284560798789632000, 33044264882950203203350756741926912000, 1673791149116076642859325881248823873536000
Offset: 1

Views

Author

Amiram Eldar, Dec 30 2022

Keywords

Comments

Indices of records in A359411.
a(2)-a(7) are the first 6 terms of A115964.
The first 15 terms are cubes. Are there noncubes in this sequence?
The corresponding record values are 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, ... . Apparently, this sequence of records is the powers of 2 (A000079).

Crossrefs

Subsequence of A025487.
Similar sequences: A037992, A318278.

Programs

  • Mathematica
    s[n_] := DivisorSum[n, 1 &, BitAnd[n, #] == # &]; f[p_, e_] := s[e]; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n];
    v = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]];
    seq = {}; dm = 0; Do[If[(dk = d[v[[k]]]) > dm, dm = dk; AppendTo[seq, v[[k]]]], {k, 1, Length[v]}]; seq

A384557 The number of exponential unitary (or e-unitary) divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2025

Keywords

Comments

First differs from A359411 at n = 2097152 = 2^21: a(2097152) = 4, while A359411(2097152) = 2.
First differs from A368979 at n = 512 = 2^9: a(512) = 2, while A368979(512) = 3.
First differs from A367516 at n = 128 = 2^7: a(128) = 2, while A367516(128) = 1.
First differs from A382291 at n = 128 = 2^7: a(128) = 2, while A382291(128) = 4.
First differs from A368168 at n = 64 = 2^6: a(64) = 2, while A368168(64) = 1.
The sum of these divisors is A384559(n), and the largest of them is A331737(n).
The number of exponential unitary (or e-unitary) divisors of n is A278908(n) and the number of divisors of n that are exponentially odd numbers is A322483(n).
All the terms are powers of 2. The first term that is greater than 2 is a(32768) = 4.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^PrimeNu[e/2^IntegerExponent[e, 2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> 2^omega(x >> valuation(x, 2)) , factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A068068(e).
a(n) >= 1, with equality if and only if n is in A138302.
a(n) <= A278908(n), with equality if and only if n is an exponentially odd number.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=2} (d(k) - d(k-1))/p^k) = 1.13551542615965557947..., where d(k) is the number of odd unitary divisors of k (A068068).
Showing 1-9 of 9 results.