cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A359411 a(n) is the number of divisors of n that are both infinitary and exponential.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 30 2022

Keywords

Comments

First differs from A318672 and A325989 at n = 32.
If e > 0 is the exponent of the highest power of p dividing n (where p is a prime), then for each divisor d of n that is both an infinitary and an exponential divisor, the exponent of the highest power of p dividing d is a number k such that k | e and the bitwise AND of e and k is equal to k.
The least term that is higher than 2 is a(216) = 4.
The position of the first appearance of a prime p in this sequence is 2^A359081(p), if A359081(p) > -1. E.g., 2^39 = 549755813888 for p = 3, 2^175 = 4.789...*10^52 for p = 5, and 2^1275 = 6.504...*10^383 for p = 7.
This sequence is unbounded since A246600 is unbounded (see A359082).

Examples

			a(8) = 2 since 8 has 2 divisors that are both infinitary and exponential: 2 and 8.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSum[n, 1 &, BitAnd[n, #] == # &]; f[p_, e_] := s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = sumdiv(n, d, bitand(d, n)==d);
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, s(f[i,2]));}
    
  • Python
    from math import prod
    from sympy import divisors, factorint
    def A359411(n): return prod(sum(1 for d in divisors(e,generator=True) if e|d == e) for e in factorint(n).values()) # Chai Wah Wu, Sep 01 2023

Formula

Multiplicative with a(p^e) = A246600(e).
a(n) = 1 if and only if n is in A138302.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} A246600(k)/p^k) = 1.135514937... .
Showing 1-1 of 1 results.