cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A382291 a(n) = A037445(n)/A034444(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Mar 21 2025

Keywords

Comments

First differs from A368168 at n = 64, and from A359411, A367516 and A368979 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^(DigitCount[e, 2, 1] - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 105]
  • PARI
    a(n) = vecprod(apply(x -> 1 << (hammingweight(x)-1), factor(n)[, 2]));

Formula

a(n) = 2^A382290(n).
Multiplicative with a(p^e) = 2^(A000120(e)-1) = A048896(e-1) (= A243036(e) for e >= 2).
a(n) >= 1, with equality if and only if n is in A138302.
a(n) = 2 if and only if n is in A382292.

A368977 The number of bi-unitary divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 3, 1, 4, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 4, 4, 2, 6, 1, 4, 3, 2, 2, 8, 2, 4, 4, 4, 4, 1, 2, 4, 4, 6, 2, 8, 2, 2, 2, 4, 2, 6, 1, 2, 4, 2, 2, 6, 4, 6, 4, 4, 2, 4, 2, 4, 2, 3, 4, 8, 2, 2, 4, 8, 2, 3, 2, 4, 2, 2, 4, 8, 2, 6, 3, 4, 2, 4, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (e+3)/2, 2*Floor[e/4]+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, (x+3)/2, 2*(x\4)+1), factor(n)[, 2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X - X^2 + 2*X^3 - X^4)/(1 - X - X^4 + X^5))[n], ", ")) \\ Vaclav Kotesovec, Jan 11 2024

Formula

Multiplicative with a(p^e) = (e+3)/2 if e is odd, and 2*floor(e/4)+1 if e is even.
a(n) >= 1, with equality if and only if n is in A062503.
a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).
From Vaclav Kotesovec, Jan 11 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - (1 - p^s + 2*p^(2*s)) / (p^s*(1 + p^s)*(1 + p^(2*s)))).
Let f(s) = Product_{p prime} (1 - (1 - p^s + 2*p^(2*s)) / (p^s*(1 + p^s)*(1 + p^(2*s)))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (1 - p + 2*p^2) / (p*(1 + p)*(1 + p^2))) = 0.5715031234451924252215041182933420817059774181158824297150124265420835...,
f'(1) = f(1) * Sum_{p prime} (4*p^5 - p^4 + 2*p^3 + 2*p + 1) * log(p) / (p^7 + 2*p^6 + p^5 + 3*p^4 + p^3 + p - 1) = f(1) * 1.1422556395248477875508983912036578244050011522937179465478688905880430...
and gamma is the Euler-Mascheroni constant A001620. (End)

A368980 The number of exponential divisors of n that are squares (A000290).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 0, DivisorSigma[0, e/2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, 0, numdiv(x/2)), factor(n)[, 2]));

Formula

a(n^2) = A049419(n). [corrected by Ridouane Oudra, Nov 19 2024]
Multiplicative with a(p^e) = A183063(e), or equivalently, a(p^e) = 0 if e is odd, and A000005(e/2) if e is even.
a(n) >= 0, with equality if and only if n is not a square number (A000037).
a(n) <= A049419(n), with equality if and only if n = 1.
Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = 1.602317... (A327837).

A384559 The sum of the exponential unitary (or e-unitary) divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 10, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 30, 5, 26, 30, 14, 29, 30, 31, 34, 33, 34, 35, 6, 37, 38, 39, 50, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 60, 55, 70, 57, 58, 59, 30, 61, 62, 21, 10, 65, 66, 67, 34, 69
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2025

Keywords

Comments

First differs from A384558 at n = 512: a(512) = 514, while A384558(512) = 522.
The number of these divisors is A384557(n), and the largest of them is A331737(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &, OddQ[#] && CoprimeQ[#, e/#] &]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, sumdiv(f[i,2], d, (d % 2) * (gcd(d, f[i,2]/d) == 1) * f[i,1]^d));}

Formula

Multiplicative with a(p^e) = Sum_{d|e, d odd, gcd(d, e/d) = 1} p^d.
a(n) = n if and only if n is squarefree (A005117).
a(n) < n if and only if n is in A072587.
a(n) > n if and only if n is in A374459.

A382660 The unitary totient function applied to the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 2, 4, 2, 6, 7, 4, 10, 12, 6, 8, 16, 18, 12, 10, 22, 14, 12, 26, 28, 8, 30, 31, 20, 16, 24, 36, 18, 24, 28, 40, 12, 42, 22, 46, 32, 52, 26, 40, 42, 36, 28, 58, 60, 30, 48, 20, 66, 44, 24, 70, 72, 36, 60, 24, 78, 40, 82, 64, 42, 56, 70, 88, 72, 60, 46, 72
Offset: 1

Views

Author

Amiram Eldar, Apr 02 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e-1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; expOddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; uphi /@ Select[Range[100], expOddQ]
  • PARI
    uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2]-1);}
    isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if(!(f[i, 2] % 2), return (0))); 1;}
    list(lim) = apply(uphi, select(isexpodd, vector(lim, i, i)));

Formula

a(n) = A047994(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(4)/(2*d^2)) * Product_{p prime} (1 - 2/p^2 + 2/p^3 - 2/p^4 + 1/p^5) = 0.504949539649594981601..., and d = A065463 is the asymptotic density of the exponentially odd numbers.

A382661 The unitary Jordan totient function applied to the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 3, 8, 24, 24, 48, 63, 72, 120, 168, 144, 192, 288, 360, 384, 360, 528, 504, 504, 728, 840, 576, 960, 1023, 960, 864, 1152, 1368, 1080, 1344, 1512, 1680, 1152, 1848, 1584, 2208, 2304, 2808, 2184, 2880, 3024, 2880, 2520, 3480, 3720, 2880, 4032, 2880, 4488, 4224
Offset: 1

Views

Author

Amiram Eldar, Apr 02 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2*e)-1; uj2[1] = 1; uj2[n_] := Times @@ f @@@ FactorInteger[n]; expOddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; uj2 /@ Select[Range[100], expOddQ]
  • PARI
    uj2(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^(2*f[i, 2])-1);}
    isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if(!(f[i, 2] % 2), return (0))); 1;}
    list(lim) = apply(uj2, select(isexpodd, vector(lim, i, i)));

Formula

a(n) = A191414(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(6)/(3*d^3)) * Product_{p prime} (1 - 1/p^2 + 1/p^5 - 2/p^6 + 1/p^7) = 0.59726984314764530141..., and d = A065463 is the asymptotic density of the exponentially odd numbers.

A384557 The number of exponential unitary (or e-unitary) divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2025

Keywords

Comments

First differs from A359411 at n = 2097152 = 2^21: a(2097152) = 4, while A359411(2097152) = 2.
First differs from A368979 at n = 512 = 2^9: a(512) = 2, while A368979(512) = 3.
First differs from A367516 at n = 128 = 2^7: a(128) = 2, while A367516(128) = 1.
First differs from A382291 at n = 128 = 2^7: a(128) = 2, while A382291(128) = 4.
First differs from A368168 at n = 64 = 2^6: a(64) = 2, while A368168(64) = 1.
The sum of these divisors is A384559(n), and the largest of them is A331737(n).
The number of exponential unitary (or e-unitary) divisors of n is A278908(n) and the number of divisors of n that are exponentially odd numbers is A322483(n).
All the terms are powers of 2. The first term that is greater than 2 is a(32768) = 4.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^PrimeNu[e/2^IntegerExponent[e, 2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> 2^omega(x >> valuation(x, 2)) , factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A068068(e).
a(n) >= 1, with equality if and only if n is in A138302.
a(n) <= A278908(n), with equality if and only if n is an exponentially odd number.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=2} (d(k) - d(k-1))/p^k) = 1.13551542615965557947..., where d(k) is the number of odd unitary divisors of k (A068068).

A384558 The sum of the exponential divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 10, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 30, 5, 26, 30, 14, 29, 30, 31, 34, 33, 34, 35, 6, 37, 38, 39, 50, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 60, 55, 70, 57, 58, 59, 30, 61, 62, 21, 10, 65, 66, 67, 34, 69
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2025

Keywords

Comments

First differs from A384559 at n = 512: a(512) = 522, while A384559(512) = 514.
The number of these divisors is A368979(n), and the largest of them is A331737(n).
The indices of records of a(n)/n are the primorial numbers (A002110) cubed, i.e., 1 and the terms of A115964.

Crossrefs

Programs

  • Maple
    A384558:=proc(n)
        local a, pe,p,e,af,d;
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            af := 0 ;
            for d in numtheory[divisors](e) do
                if type(d,'odd') then
                    af := af+p^d ;
                end if;
            end do:
            a := a*af ;
        end do;
        a
    end proc:
    seq(A384558(n), n=1..100); # R. J. Mathar, Jun 04 2025
  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &, OddQ[#] &]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, sumdiv(f[i,2], d, (d % 2) * f[i,1]^d));}

Formula

Multiplicative with a(p^e) = Sum_{d|e, d odd} p^d.
a(n) = n if and only if n is squarefree (A005117).
a(n) < n if and only if n is in A072587.
a(n) > n if and only if n is in A374459.
limsup_{n->oo} a(n)/n = Product_{p prime} (1 + 1/p^2) = 15/Pi^2 (A082020).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p*(p^2-1)) - 1/(p^2-1) + (1-1/p) * Sum_{k>=1} p^(2*k+1)/(p^(4*k+2)-1)) = 0.80824764393216997768... .
Showing 1-8 of 8 results.