cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 74 results. Next

A293183 Numbers k such that bsigma(k) = bsigma(k+1), where bsigma(k) is the sum of the bi-unitary divisors of k (A188999).

Original entry on oeis.org

14, 27, 44, 459, 620, 957, 1334, 1634, 1652, 2204, 2685, 3195, 3451, 3956, 5547, 8636, 8907, 9844, 11515, 11745, 16874, 19491, 20145, 20155, 27643, 31724, 33998, 38180, 41265, 41547, 42818, 45716, 48364, 64665, 74875, 74918, 79316, 79826, 79833, 83780, 84134
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2017

Keywords

Examples

			14 is in the sequence since bsigma(14) = bsigma(15) = 24.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] :=
    DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; a = {}; b1 = 0; Do[b2 = bsigma[k]; If[b1 == b2, a = AppendTo[a, k - 1]]; b1 = b2, {k, 1, 10^6}]; a (* after Michael De Vlieger at A188999 *)

A292982 Bi-unitary abundant numbers: numbers n such that bsigma(n) > 2n, where bsigma is the sum of the bi-unitary divisors function (A188999).

Original entry on oeis.org

24, 30, 40, 42, 48, 54, 56, 66, 70, 72, 78, 80, 88, 96, 102, 104, 114, 120, 138, 150, 160, 162, 168, 174, 186, 192, 210, 216, 222, 224, 240, 246, 258, 264, 270, 280, 282, 288, 294, 312, 318, 320, 330, 336, 352, 354, 360, 366, 378, 384, 390, 402, 408, 416, 420
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2017

Keywords

Comments

Analogous to abundant numbers (A005101) with bi-unitary sigma (A188999) instead of sigma (A000203).

Examples

			24 is in the sequence since bsigma(24) = 60 > 2*24.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] :=
    DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; bAbundantQ[n_] := bsigma[n] > 2 n; Select[Range[1000], bAbundantQ] (* after Michael De Vlieger at A188999 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    isok(n) = vecsum(biudivs(n)) > 2*n; \\ Michel Marcus, Dec 13 2017

A293186 Odd bi-unitary abundant numbers: odd numbers k such that bsigma(k) > 2*k, where bsigma is the sum of the bi-unitary divisors function (A188999).

Original entry on oeis.org

945, 8505, 10395, 12285, 15015, 16065, 17955, 19305, 19635, 21735, 21945, 23205, 23625, 25245, 25515, 25935, 26565, 27405, 28215, 28875, 29295, 29835, 31185, 31395, 33345, 33495, 33915, 34125, 34155, 34965, 35805, 36855, 37125, 38745, 39585, 40635, 41055
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2017

Keywords

Comments

Analogous to odd abundant numbers (A005231) with bi-unitary sigma (A188999) instead of sigma (A000203).
The numbers of terms not exceeding 10^k, for k = 3, 4, ..., are 1, 2, 82, 559, 6493, 61831, 642468, 6339347, 63112602, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00063... . - Amiram Eldar, Sep 02 2022

Examples

			945 is in the sequence since bsigma(945) = 1920 > 2*945.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] :=
    DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; bOddAbundantQ[n_] := OddQ[n] && bsigma[n] > 2 n; Select[Range[1000], bOddAbundantQ] (* after Michael De Vlieger at A188999 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    biusig(n) = vecsum(biudivs(n));
    isok(n) = (n % 2) && (biusig(n) > 2*n); \\ Michel Marcus, Dec 15 2017

A307159 Partial sums of the bi-unitary divisors sum function: Sum_{k=1..n} bsigma(k), where bsigma is A188999.

Original entry on oeis.org

1, 4, 8, 13, 19, 31, 39, 54, 64, 82, 94, 114, 128, 152, 176, 203, 221, 251, 271, 301, 333, 369, 393, 453, 479, 521, 561, 601, 631, 703, 735, 798, 846, 900, 948, 998, 1036, 1096, 1152, 1242, 1284, 1380, 1424, 1484, 1544, 1616, 1664, 1772, 1822, 1900, 1972, 2042
Offset: 1

Views

Author

Amiram Eldar, Mar 27 2019

Keywords

References

  • D. Suryanarayana and M. V. Subbarao, Arithmetical functions associated with the biunitary k-ary divisors of an integer, Indian J. Math., Vol. 22 (1980), pp. 281-298.

Crossrefs

Programs

  • Mathematica
    fun[p_,e_] := If[OddQ[e],(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); Accumulate[Array[bsigma, 60]]

Formula

a(n) ~ c * n^2, where c = (zeta(2)*zeta(3)/2) * Product_{p}(1 - 2/p^3 + 1/p^4 + 1/p^5 - 1/p^6) (A307160).

A292983 Bi-unitary highly abundant numbers: numbers n such that bsigma(n) > bsigma(m) for all m < n, where bsigma is the sum of the bi-unitary divisors function (A188999).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 21, 22, 24, 30, 40, 42, 48, 54, 66, 72, 78, 88, 96, 120, 160, 168, 210, 216, 240, 264, 312, 330, 360, 378, 384, 408, 456, 480, 600, 648, 672, 840, 1056, 1080, 1320, 1512, 1560, 1680, 1848, 1920, 2040, 2184, 2280, 2640
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2017

Keywords

Comments

Analogous to highly abundant numbers (A002093) with bi-unitary sigma (A188999) instead of sigma (A000203).

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; a = {}; bmax = 0; Do[b = bsigma[n]; If[b > bmax, AppendTo[a, n]; bmax = b], {n, 3000}]; a (* after Michael De Vlieger at A188999 *)

A292984 Bi-unitary superabundant numbers: numbers n such that bsigma(n)/n > bsigma(m)/m for all m < n, where bsigma is the sum of the bi-unitary divisors function (A188999).

Original entry on oeis.org

1, 2, 6, 24, 96, 120, 480, 840, 3360, 7560, 30240, 83160, 332640, 1081080, 4324320, 17297280, 69189120, 73513440, 294053760, 1176215040, 1396755360, 5587021440
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2017

Keywords

Comments

Analogous to superabundant numbers (A004394) with bi-unitary sigma (A188999) instead of sigma (A000203).
The least bi-unitary k-abundant number (bsigma(m)/m > k*m) for k = 1, 2, ... is 1, 24, 480, 83160, 294053760. - Amiram Eldar, Dec 05 2018

Crossrefs

Programs

  • Mathematica
    fun[p_,e_]:=If[OddQ[e],(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2)];bsigma[n_] := If[n==1,1,Times @@ (fun @@@ FactorInteger[n])]; a = {}; rmax = 0; Do[r = bsigma[n]/n; If[r > rmax, AppendTo[a, n]; rmax = r], {n, 1000}]; a

Extensions

a(14)-a(22) from Amiram Eldar, Dec 06 2018

A318175 Numbers m such that A188999(A188999(m)) = k*m for some k where A188999 is the bi-unitary sigma function.

Original entry on oeis.org

1, 2, 8, 9, 10, 15, 18, 21, 24, 30, 42, 60, 144, 160, 168, 240, 270, 288, 324, 480, 512, 630, 648, 960, 1023, 1200, 1404, 1428, 1536, 2046, 2400, 2808, 2856, 2880, 3276, 3570, 4092, 4320, 4608, 6552, 8925, 10080, 10368, 10752, 11550, 13824, 14280, 14976, 15345, 16368, 17850
Offset: 1

Views

Author

Michel Marcus, Aug 20 2018

Keywords

Comments

As in A019278, here there are many instances where if x is a term, then A188999(x) is also a term.
Additionally, there exist longer chains of 3 or 4 elements; e.g.,
- 8 (3), 15 (4), 24 (5), 60 (6);
- 9 (2), 10 (3), 18 (4), 30 (5);
- 512 (3), 1023 (4), 1536 (5), 4092 (6);
- 8925 (4), 14976 (5), 35700 (6);
- 219969739395000 (16), 899826278400000 (17), 3519515830320000 (18).

Examples

			For m=2, A188999(2) = 3 and A188999(3) = 4, so 2 is a term with k=2.
For m=9, A188999(9) = 10 and A188999(10) = 18, so 9 is a term with k=2.
		

Crossrefs

Cf. A188999 (bi-unitary sigma).
Cf. A019278 (analog for sigma), A318182 (analog for infinitary sigma).

Programs

  • Mathematica
    bsigma[n_] := If[n==1, 1, Product[{p, e} = pe; If[OddQ[e], (p^(e+1)-1)/(p-1), ((p^(e+1)-1)/(p-1)-p^(e/2))], {pe, FactorInteger[n]}]];
    Reap[For[m = 1, m < 20000, m++, If[Divisible[bsigma @ bsigma @ m, m], Sow[m]]]][[2, 1]] (* Jean-François Alcover, Sep 22 2018 *)
  • PARI
    a188999(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f); }
    isok(n) = frac(a188999(a188999(n))/n) == 0;

A334972 Bi-unitary admirable numbers: numbers k such that there is a proper bi-unitary divisor d of k such that bsigma(k) - 2*d = 2*k, where bsigma is the sum of bi-unitary divisors function (A188999).

Original entry on oeis.org

24, 30, 40, 42, 48, 54, 56, 66, 70, 78, 80, 88, 102, 104, 114, 120, 138, 150, 162, 174, 186, 222, 224, 246, 258, 270, 282, 294, 318, 354, 360, 366, 402, 420, 426, 438, 448, 474, 498, 534, 540, 582, 606, 618, 630, 642, 654, 660, 672, 678, 720, 726, 762, 780, 786
Offset: 1

Views

Author

Amiram Eldar, May 18 2020

Keywords

Comments

Equivalently, numbers that are equal to the sum of their proper bi-unitary divisors, with one of them taken with a minus sign.
Admirable numbers (A111592) that are exponentially odd (A268335) are also bi-unitary admirable numbers since all of their divisors are bi-unitary. Terms that are not exponentially odd are 48, 80, 150, 162, 294, 360, 420, 448, 540, 630, 660, 720, 726, 780, 832, 990, ...

Examples

			48 is in the sequence since 48 = 1 + 2 + 3 - 6 + 8 + 16 + 24 is the sum of its proper bi-unitary divisors with one of them, 6, taken with a minus sign.
		

Crossrefs

The bi-unitary version of A111592.
Subsequence of A292982.

Programs

  • Mathematica
    fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); buDivQ[n_, 1] = True; buDivQ[n_, div_] := If[Mod[#2, #1] == 0, Last@Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]] &, {#1, #2/#1}]] == 1, False] & @@ {div, n}; buAdmQ[n_] := (ab = bsigma[n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2] && buDivQ[n, ab/2]; Select[Range[1000], buAdmQ]

A370904 Partial alternating sums of the sum of the bi-unitary divisors function (A188999).

Original entry on oeis.org

1, -2, 2, -3, 3, -9, -1, -16, -6, -24, -12, -32, -18, -42, -18, -45, -27, -57, -37, -67, -35, -71, -47, -107, -81, -123, -83, -123, -93, -165, -133, -196, -148, -202, -154, -204, -166, -226, -170, -260, -218, -314, -270, -330, -270, -342, -294, -402, -352, -430
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Similar sequences: A068762, A068773, A307704, A357817, A362028.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[(-1)^(# + 1) * bsigma[#] &, 100]]
  • PARI
    bsigma(n) = {my(f = factor(n)); prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; if(e%2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)));}
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * bsigma(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} (-1)^(k+1) * A188999(k).
a(n) = -(11/53) * c * n^2 + O(n * log(n)^3), where c = A307160 (Tóth, 2017).

A293187 Bi-unitary 3-abundant numbers: numbers k such that bsigma(k) > 3*k, where bsigma is the sum of the bi-unitary divisors function (A188999).

Original entry on oeis.org

480, 840, 1080, 1320, 1512, 1560, 1680, 1848, 1890, 1920, 2040, 2184, 2280, 2376, 2688, 2760, 2856, 3000, 3192, 3240, 3360, 3480, 3720, 3840, 4320, 4440, 4920, 5160, 5280, 5640, 5880, 6048, 6240, 6360, 6720, 7080, 7320, 7392, 7560, 7680, 8040, 8160, 8520
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2017

Keywords

Comments

Analogous to 3-abundant numbers (A023197) with bi-unitary sigma (A188999) instead of sigma (A000203).

Examples

			480 is in the sequence since bi-unitary sigma(480) = 1512 > 3 * 480.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] :=  DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; bAbundantQ[n_] := bsigma[n] > 3 n; Select[Range[1000], bAbundantQ] (* after Michael De Vlieger at A188999 *)
Showing 1-10 of 74 results. Next