cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A307160 Decimal expansion of the constant c in the asymptotic formula for the partial sums of the bi-unitary divisors sum function, A307159(k) ~ c*k^2.

Original entry on oeis.org

7, 5, 2, 8, 3, 8, 7, 4, 1, 0, 0, 2, 2, 9, 4, 3, 1, 1, 5, 4, 3, 3, 3, 0, 9, 5, 1, 5, 5, 3, 0, 4, 1, 2, 7, 6, 5, 1, 9, 5, 2, 5, 4, 6, 7, 5, 6, 5, 2, 2, 1, 0, 8, 5, 8, 7, 7, 9, 0, 3, 2, 8, 7, 8, 6, 8, 1, 2, 5, 2, 2, 6, 0, 5, 5, 8, 1, 4, 8, 7, 8, 4, 7, 7, 4, 1, 8, 6, 0, 4, 7, 8, 2, 5, 8, 0, 7, 0, 0, 1, 1, 9, 9, 4, 1, 3
Offset: 0

Views

Author

Amiram Eldar, Mar 27 2019

Keywords

Comments

The asymptotic mean of the bi-unitary abundancy index lim_{n->oo} (1/n) * Sum_{k=1..n} A188999(k)/k = 2*c = 1.505677... - Amiram Eldar, Jun 10 2020

Examples

			0.75283874100229431154333095155304127651952546756522...
		

References

  • D. Suryanarayana and M. V. Subbarao, Arithmetical functions associated with the biunitary k-ary divisors of an integer, Indian J. Math., Vol. 22 (1980), pp. 281-298.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; nm=1000; c = Rest[CoefficientList[Series[Log[1 - 2*x^3 + x^4 + x^5 - x^6],{x,0,nm}],x] * Range[0, nm]]; RealDigits[(Zeta[2]*Zeta[3]/2) * Exp[NSum[Indexed[c, k] * PrimeZetaP[k]/k, {k, 2, nm}, NSumTerms -> nm, WorkingPrecision -> nm]], 10, 100][[1]]

Formula

Equals (zeta(2)*zeta(3)/2)* Product_{p}(1 - 2/p^3 + 1/p^4 + 1/p^5 - 1/p^6).

Extensions

More terms from Vaclav Kotesovec, May 29 2020

A307161 Numbers n such that A307159(n) = Sum_{k=1..n} bsigma(k) is divisible by n, where bsigma(k) is the sum of bi-unitary divisors of k (A188999).

Original entry on oeis.org

1, 2, 17, 37, 50, 56, 391, 919, 1399, 2829, 6249, 13664, 28829, 62272, 67195, 585391, 5504271, 6798541, 10763933, 866660818, 3830393407, 11044287758, 23058607363, 83159875881, 206501883259, 297734985607, 1087473543732, 1184060078117, 2789730557061, 2821551579466, 3529184155643
Offset: 1

Views

Author

Amiram Eldar, Mar 27 2019

Keywords

Comments

The bi-unitary version of A056550.
The corresponding quotients are 1, 2, 13, 28, 38, 43, ... (see the link for more values).
a(32) > 10^13. - Giovanni Resta, May 28 2019

Crossrefs

Programs

  • Mathematica
    fun[p_,e_] := If[OddQ[e],(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); seq={};s = 0; Do[s = s + bsigma[n]; If[Divisible[s,n], AppendTo[seq,n]], {n, 1, 10^6}]; seq

Extensions

a(23)-a(31) from Giovanni Resta, Apr 20 2019

A370904 Partial alternating sums of the sum of the bi-unitary divisors function (A188999).

Original entry on oeis.org

1, -2, 2, -3, 3, -9, -1, -16, -6, -24, -12, -32, -18, -42, -18, -45, -27, -57, -37, -67, -35, -71, -47, -107, -81, -123, -83, -123, -93, -165, -133, -196, -148, -202, -154, -204, -166, -226, -170, -260, -218, -314, -270, -330, -270, -342, -294, -402, -352, -430
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Similar sequences: A068762, A068773, A307704, A357817, A362028.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[(-1)^(# + 1) * bsigma[#] &, 100]]
  • PARI
    bsigma(n) = {my(f = factor(n)); prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; if(e%2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)));}
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * bsigma(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} (-1)^(k+1) * A188999(k).
a(n) = -(11/53) * c * n^2 + O(n * log(n)^3), where c = A307160 (Tóth, 2017).

A327566 Partial sums of the infinitary divisors sum function: a(n) = Sum_{k=1..n} isigma(k), where isigma is A049417.

Original entry on oeis.org

1, 4, 8, 13, 19, 31, 39, 54, 64, 82, 94, 114, 128, 152, 176, 193, 211, 241, 261, 291, 323, 359, 383, 443, 469, 511, 551, 591, 621, 693, 725, 776, 824, 878, 926, 976, 1014, 1074, 1130, 1220, 1262, 1358, 1402, 1462, 1522, 1594, 1642, 1710, 1760, 1838, 1910, 1980
Offset: 1

Views

Author

Amiram Eldar, Sep 17 2019

Keywords

Comments

Differs from A307159 at n >= 16.

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.

Crossrefs

Cf. A049417 (isigma), A327574.
Cf. A024916 (all divisors), A064609 (unitary), A307042 (exponential), A307159 (bi-unitary).

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) + 1); Accumulate[Array[isigma, 52]]

Formula

a(n) ~ c * n^2, where c = 0.730718... (A327574).

A379615 Numerators of the partial sums of the reciprocals of the sum of bi-unitary divisors function (A188999).

Original entry on oeis.org

1, 4, 19, 107, 39, 61, 259, 89, 93, 857, 887, 181, 1303, 331, 1345, 4091, 4175, 21127, 4301, 21757, 87973, 88813, 90073, 90577, 1192621, 1201981, 1211809, 1221637, 1234741, 1240201, 626243, 89909, 45247, 15169, 30533, 153601, 2941819, 2956639, 20807623, 20876783
Offset: 1

Views

Author

Amiram Eldar, Dec 27 2024

Keywords

Examples

			Fractions begin with 1, 4/3, 19/12, 107/60, 39/20, 61/30, 259/120, 89/40, 93/40, 857/360, 887/360, 181/72, ...
		

Crossrefs

Cf. A188999, A307159, A370904, A379616 (denominators), A379617.

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/bsigma[n], {n, 1, 50}]]]
  • PARI
    bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2)));}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / bsigma(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A188999(k)).
a(n)/A379616(n) = A * log(n) + B + O(log(n)^(14/3) * log(log(n))^(4/3) / n), where A and B are constants.

A379616 Denominators of the partial sums of the reciprocals of the sum of bi-unitary divisors function (A188999).

Original entry on oeis.org

1, 3, 12, 60, 20, 30, 120, 40, 40, 360, 360, 72, 504, 126, 504, 1512, 1512, 7560, 1512, 7560, 30240, 30240, 30240, 30240, 393120, 393120, 393120, 393120, 393120, 393120, 196560, 28080, 14040, 4680, 9360, 46800, 889200, 889200, 6224400, 6224400, 889200, 1778400
Offset: 1

Views

Author

Amiram Eldar, Dec 27 2024

Keywords

Crossrefs

Cf. A188999, A307159, A370904, A379615 (numerators), A379618.

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/bsigma[n], {n, 1, 50}]]]
  • PARI
    bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2)));}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / bsigma(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A188999(k)).

A379617 Numerators of the partial alternating sums of the reciprocals of the sum of bi-unitary divisors function (A188999).

Original entry on oeis.org

1, 2, 11, 43, 53, 4, 37, 103, 23, 65, 71, 337, 2539, 1217, 2539, 7337, 7757, 1501, 7883, 7631, 31469, 30629, 31889, 6277, 84625, 82753, 423593, 82753, 426869, 421409, 216847, 213727, 108911, 11899, 24253, 119081, 2317139, 760853, 773203, 6889667, 7037867, 13946059
Offset: 1

Views

Author

Amiram Eldar, Dec 27 2024

Keywords

Examples

			Fractions begin with 1, 2/3, 11/12, 43/60, 53/60, 4/5, 37/40, 103/120, 23/24, 65/72, 71/72, 337/360, ...
		

Crossrefs

Cf. A188999, A307159, A370904, A379615, A379618 (denominators).

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/bsigma[n], {n, 1, 50}]]]
  • PARI
    bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2)));}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / bsigma(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A188999(k)).
a(n)/A379618(n) = A * log(n) + B + O(log(n)^(14/3) * log(log(n))^(4/3) * n^c), where c = log(9/10)/log(2) = -0.152003..., and A and B are constants.

A379618 Denominators of the partial alternating sums of the reciprocals of the sum of bi-unitary divisors function (A188999).

Original entry on oeis.org

1, 3, 12, 60, 60, 5, 40, 120, 24, 72, 72, 360, 2520, 1260, 2520, 7560, 7560, 1512, 7560, 7560, 30240, 30240, 30240, 6048, 78624, 78624, 393120, 78624, 393120, 393120, 196560, 196560, 98280, 10920, 21840, 109200, 2074800, 691600, 691600, 6224400, 6224400, 12448800
Offset: 1

Views

Author

Amiram Eldar, Dec 27 2024

Keywords

Crossrefs

Cf. A188999, A307159, A370904, A379616, A379617 (numerators).

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[(-1)^(n+1)/bsigma[n], {n, 1, 50}]]]
  • PARI
    bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2)));}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / bsigma(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A188999(k)).
Showing 1-8 of 8 results.