cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A307159 Partial sums of the bi-unitary divisors sum function: Sum_{k=1..n} bsigma(k), where bsigma is A188999.

Original entry on oeis.org

1, 4, 8, 13, 19, 31, 39, 54, 64, 82, 94, 114, 128, 152, 176, 203, 221, 251, 271, 301, 333, 369, 393, 453, 479, 521, 561, 601, 631, 703, 735, 798, 846, 900, 948, 998, 1036, 1096, 1152, 1242, 1284, 1380, 1424, 1484, 1544, 1616, 1664, 1772, 1822, 1900, 1972, 2042
Offset: 1

Views

Author

Amiram Eldar, Mar 27 2019

Keywords

References

  • D. Suryanarayana and M. V. Subbarao, Arithmetical functions associated with the biunitary k-ary divisors of an integer, Indian J. Math., Vol. 22 (1980), pp. 281-298.

Crossrefs

Programs

  • Mathematica
    fun[p_,e_] := If[OddQ[e],(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); Accumulate[Array[bsigma, 60]]

Formula

a(n) ~ c * n^2, where c = (zeta(2)*zeta(3)/2) * Product_{p}(1 - 2/p^3 + 1/p^4 + 1/p^5 - 1/p^6) (A307160).

A370904 Partial alternating sums of the sum of the bi-unitary divisors function (A188999).

Original entry on oeis.org

1, -2, 2, -3, 3, -9, -1, -16, -6, -24, -12, -32, -18, -42, -18, -45, -27, -57, -37, -67, -35, -71, -47, -107, -81, -123, -83, -123, -93, -165, -133, -196, -148, -202, -154, -204, -166, -226, -170, -260, -218, -314, -270, -330, -270, -342, -294, -402, -352, -430
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Similar sequences: A068762, A068773, A307704, A357817, A362028.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Accumulate[Array[(-1)^(# + 1) * bsigma[#] &, 100]]
  • PARI
    bsigma(n) = {my(f = factor(n)); prod(i=1, #f~, p = f[i, 1]; e = f[i, 2]; if(e%2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)));}
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * bsigma(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} (-1)^(k+1) * A188999(k).
a(n) = -(11/53) * c * n^2 + O(n * log(n)^3), where c = A307160 (Tóth, 2017).

A327574 Decimal expansion of the constant that appears in the asymptotic formula for average order of the infinitary divisors sum function (A049417).

Original entry on oeis.org

7, 3, 0, 7, 1, 8, 2, 4, 2, 1, 2, 7, 3, 8, 4, 2, 2, 5, 8, 3, 8, 9, 7, 5, 4, 6, 8, 1, 7, 3, 5, 3, 0, 1, 6, 1, 9, 5, 7, 2, 5, 6, 4, 3, 3, 8, 6, 1, 7, 2, 7, 8, 6, 9, 7, 0, 7, 3, 3, 6, 7, 6, 2, 3, 0, 1, 0, 7, 9, 8, 8, 3, 3, 2, 8, 0, 0, 5, 3, 4, 6, 3, 7, 0, 2, 9, 9
Offset: 0

Views

Author

Amiram Eldar, Sep 17 2019

Keywords

Comments

The asymptotic mean of the infinitary abundancy index lim_{n->oo} (1/n) * Sum_{k=1..n} A049417(k)/k = 1.461436... is twice this constant. - Amiram Eldar, Jun 13 2020

Examples

			0.730718242127384225838975468173530161957256433861727...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.

Crossrefs

Cf. A013661 (corresponding constant for all divisors), A275480 (exponential), A306633 (unitary), A307160 (bi-unitary).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; em = 10; f[x_] := Sum[Log[1 + x^(2^e)/(1 + 1/x^(2^e))], {e, 0, em}]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[(1/2) * Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

Equals Limit_{k->oo} A327566(k)/k^2.
Equals (1/2) * Product_{P} (1 + 1/(P*(P+1))), where P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376).
Showing 1-3 of 3 results.