cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379616 Denominators of the partial sums of the reciprocals of the sum of bi-unitary divisors function (A188999).

Original entry on oeis.org

1, 3, 12, 60, 20, 30, 120, 40, 40, 360, 360, 72, 504, 126, 504, 1512, 1512, 7560, 1512, 7560, 30240, 30240, 30240, 30240, 393120, 393120, 393120, 393120, 393120, 393120, 196560, 28080, 14040, 4680, 9360, 46800, 889200, 889200, 6224400, 6224400, 889200, 1778400
Offset: 1

Views

Author

Amiram Eldar, Dec 27 2024

Keywords

Crossrefs

Cf. A188999, A307159, A370904, A379615 (numerators), A379618.

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/bsigma[n], {n, 1, 50}]]]
  • PARI
    bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2)));}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / bsigma(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A188999(k)).

A379617 Numerators of the partial alternating sums of the reciprocals of the sum of bi-unitary divisors function (A188999).

Original entry on oeis.org

1, 2, 11, 43, 53, 4, 37, 103, 23, 65, 71, 337, 2539, 1217, 2539, 7337, 7757, 1501, 7883, 7631, 31469, 30629, 31889, 6277, 84625, 82753, 423593, 82753, 426869, 421409, 216847, 213727, 108911, 11899, 24253, 119081, 2317139, 760853, 773203, 6889667, 7037867, 13946059
Offset: 1

Views

Author

Amiram Eldar, Dec 27 2024

Keywords

Examples

			Fractions begin with 1, 2/3, 11/12, 43/60, 53/60, 4/5, 37/40, 103/120, 23/24, 65/72, 71/72, 337/360, ...
		

Crossrefs

Cf. A188999, A307159, A370904, A379615, A379618 (denominators).

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/bsigma[n], {n, 1, 50}]]]
  • PARI
    bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2)));}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / bsigma(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A188999(k)).
a(n)/A379618(n) = A * log(n) + B + O(log(n)^(14/3) * log(log(n))^(4/3) * n^c), where c = log(9/10)/log(2) = -0.152003..., and A and B are constants.
Showing 1-2 of 2 results.