A189000 Bi-unitary multiperfect numbers.
1, 6, 60, 90, 120, 672, 2160, 10080, 22848, 30240, 342720, 523776, 1028160, 1528800, 6168960, 7856640, 7983360, 14443520, 22932000, 23569920, 43330560, 44553600, 51979200, 57657600, 68796000, 133660800, 172972800, 779688000, 1476304896, 2339064000, 6840038400
Offset: 1
Keywords
Examples
n=120 divides A188999(120)=360. n=90 divides A188999(90)=180. n=672 divides A188999(672)=2016.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..42
- Peter Hagis, Bi-Unitary amicable and multiperfect numbers, Fib. Quart. 25 (2) (1987) 144-151
- Pentti Haukkanen and V. Sitaramaiah, Bi-unitary multiperfect numbers, I, Notes Number Theory Discrete Math. 26 (1) (2020) 93-171.
- Michel Marcus, Unexhaustive list of terms
- C. R. Wall, Bi-unitary perfect numbers, Proc. Amer. Math. Soc. 33 (1) (1972) 39-42.
- Tomohiro Yamada, Determining all biunitary triperfect numbers of a certain form, arXiv:2406.19331 [math.NT], 2024.
Crossrefs
Programs
-
Mathematica
bsig[n_] := If[n == 1, 1, Block[{p, e}, Product[{p, e} = pe; (p^(e + 1) - 1)/(p - 1) - If[EvenQ[e], p^(e/2), 0], {pe, FactorInteger[n]}]]]; Select[Range[10^5], Mod[bsig[#], #] == 0 &] (* Giovanni Resta, Apr 15 2017 *)
-
PARI
a188999(n) = {my(f = factor(n)); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f); } isok(n) = ! frac(a188999(n)/n); \\ Michel Marcus, Sep 03 2018
Formula
{n | A188999(n)}.
Extensions
a(18)-a(27) by D. S. McNeil, Apr 15 2011
a(28)-a(31) from Giovanni Resta, Apr 15 2017
a(1)=1 inserted by Giovanni Resta, Sep 07 2018
Comments