cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A293185 Bi-unitary highly composite numbers: where the number of bi-unitary divisors of n (A286324) increases to a record.

Original entry on oeis.org

1, 2, 6, 24, 96, 120, 480, 840, 3360, 7560, 30240, 83160, 272160, 332640, 1081080, 2993760, 4324320, 17297280, 38918880, 69189120, 73513440, 294053760, 661620960, 1176215040, 1396755360, 5587021440, 12570798240, 22348085760, 32125373280, 128501493120
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2017

Keywords

Comments

Analogous to highly composite numbers (A002182) with number of bi-unitary divisors (A286324) instead of number of divisors (A000005).
The first 12 terms are common with bi-unitary superabundant numbers (A292984).
The record numbers of bi-unitary divisors are 1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, ... (see the link for more values).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (e + 1), e]; bdivnum[n_] := If[n == 1, 1, Times @@ (f @@@ FactorInteger[n])]; bm = 0; s = {}; Do[b1 = bdivnum [k]; If[b1 > bm, AppendTo[s, k]; bm = b1], {k, 1, 100000}]; s

Extensions

a(18)-a(30) from Amiram Eldar, Dec 01 2018

A283052 Numbers k such that uphi(k)/phi(k) > uphi(m)/phi(m) for all m < k, where phi(k) is the Euler totient function (A000010) and uphi(k) is the unitary totient function (A047994).

Original entry on oeis.org

1, 4, 8, 16, 32, 36, 72, 144, 216, 288, 432, 864, 1728, 2592, 3600, 5400, 7200, 10800, 21600, 43200, 64800, 108000, 129600, 216000, 259200, 324000, 529200, 1058400, 2116800, 3175200, 5292000, 6350400, 10584000, 12700800, 15876000, 31752000, 63504000, 95256000
Offset: 1

Views

Author

Amiram Eldar, May 19 2017

Keywords

Comments

This sequence is infinite.
a(1) = 1, a(6) = 36, a(15) = 3600 and a(32) = 6350400 are the smallest numbers n such that uphi(n)/phi(n) = 1, 2, 3 and 4. They are squares of 1, 6, 60, and 2520.
Also, coreful superabundant numbers: numbers k with a record value of the coreful abundancy index, A057723(k)/k > A057723(m)/m for all m < k. The two sequences are equivalent since A057723(k)/k = A047994(k)/A000010(k) for all k. - Amiram Eldar, Dec 28 2020

Examples

			uphi(k)/phi(k) = 1, 1, 1, 3/2 for k = 1, 2, 3, 4, thus a(1) = 1 and a(2) = 4 since a(4) > a(m) for m < 4.
		

Crossrefs

Programs

  • Mathematica
    uphi[n_] := If[n == 1, 1, (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@
    FactorInteger[n]))[[1]]]; a = {}; rmax = 0; For[k = 0, k < 10^9, k++; r = uphi[k]/EulerPhi[k]; If[r > rmax, rmax = r; a = AppendTo[a, k]]]; a
  • PARI
    uphi(n) = my(f = factor(n)); prod(i=1, #f~, f[i,1]^f[i,2]-1);
    lista(nn) = {my(rmax = 0); for (n=1, nn, if ((newr=uphi(n)/eulerphi(n)) > rmax, print1(n, ", "); rmax = newr););} \\ Michel Marcus, May 20 2017

A348273 Noninfinitary superabundant numbers: numbers m such that nisigma(m)/m > nisigma(k)/k for all k < m, where nisigma(m) is the sum of noninfinitary divisors of m (A348271).

Original entry on oeis.org

1, 4, 12, 16, 36, 48, 144, 720, 3600, 25200, 176400, 226800, 1587600, 1940400, 2494800, 17463600, 32432400, 192099600, 227026800, 2497294800, 3632428800, 32464832400, 39956716800
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Comments

The least term k with A348271(k)/k > m for m = 1, 2, 3, .... is 36, 3600, 1587600, ...

Crossrefs

Cf. A348271.
Subsequence of A348272.
The noninfinitary version of A004394.
Similar sequences: A002110 (unitary), A037992 (infinitary), A061742 (exponential), A292984, A329882.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; s[n_] := DivisorSigma[1,n] - isigma[n]; seq = {}; rm = -1; Do[r1 = s[n]/n; If[r1 > rm, rm = r1; AppendTo[seq, n]],{n, 1, 10^6}]; seq

A349111 Powerful superabundant numbers: numbers m such that psigma(m)/m > psigma(k)/k for all k < m, where psigma(k) is the sum of powerful divisors of k (A183097).

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 128, 144, 216, 432, 864, 1296, 1728, 2592, 5184, 10368, 15552, 31104, 54000, 108000, 162000, 216000, 324000, 648000, 1296000, 1944000, 3240000, 3888000, 6480000, 9720000, 19440000, 38880000, 58320000, 74088000, 111132000, 222264000, 444528000, 666792000
Offset: 1

Views

Author

Amiram Eldar, Nov 08 2021

Keywords

Comments

The corresponding record values are 1, 5/4, 13/8, 29/16, 61/32, 125/64, ...
The least term k with psigma(k)/k > m, for m = 2, 3, ..., is 144, 54000, 666792000, ...

Crossrefs

Subsequence of A349112.
Similar sequences: A002110 (unitary), A037992 (infinitary), A061742, A292984, A329882, A348273.

Programs

  • Mathematica
    f[p_,e_] := (p^(e+1)-1)/(p-1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; rm = 0; Do[r1 = s[n]/n; If[r1 > rm, rm = r1; AppendTo[seq, n]], {n, 1, 10^6}]; seq

A361785 Indices of records in the sequence of bi-unitary harmonic means A361782(k)/A361783(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 54, 56, 60, 84, 96, 120, 168, 210, 240, 270, 280, 360, 420, 480, 672, 840, 1080, 1320, 1512, 1680, 1890, 2160, 2310, 2520, 3080, 3360, 4320, 5280, 6048, 7392, 7560, 9240, 10920, 11880, 14040, 15120, 18480, 20790
Offset: 1

Views

Author

Amiram Eldar, Mar 24 2023

Keywords

Examples

			The harmonic means of the bi-unitary divisors of the first 6 positive integers are 1 < 4/3 < 3/2 < 8/5 < 5/3 < 2. A361782(7)/A361783(7) = 9/5 < 2, and the next record, A361782(8)/A361783(8) = 32/15, occurs at 8. Therefore, the first 7 terms of this sequence are 1, 2, 3, 4, 5, 6 and 8.
		

Crossrefs

Similar sequences: A179971, A348654, A361319.
Other sequences related to records of bi-unitary divisors: A293185, A292983, A292984.

Programs

  • Mathematica
    f[p_, e_] := p^e * If[OddQ[e], (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))]; buhmean[1] = 1; buhmean[n_] := Times @@ f @@@ FactorInteger[n]; seq[kmax_] := Module[{buh, buhmax = 0, s = {}}, Do[buh = buhmean[k]; If[buh > buhmax, buhmax = buh; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[20000]
  • PARI
    buhmean(n) = {my(f = factor(n), p, e); n * prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2];  if(e%2, (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2)))); }
    lista(kmax) = {my(buh, buhmax=0); for(k = 1, kmax, buh = buhmean(k); if(buh > buhmax, buhmax = buh; print1(k, ", "))); }

A348630 Nonexponential superabundant numbers: numbers m such that nesigma(m)/m > nesigma(k)/k for all k < m, where nesigma(m) is the sum of nonexponential divisors of m (A160135).

Original entry on oeis.org

1, 24, 30, 96, 120, 480, 840, 3360, 13440, 30240, 36960, 120960, 147840, 272160, 332640, 1330560, 2993760, 4324320, 17297280, 38918880, 73513440, 220540320, 294053760, 661620960, 1396755360, 2646483840, 5587021440, 12570798240
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Comments

The least term k with nesigma(k)/k > m for m = 2, 3, 4, ... is 480, 332640, 1396755360, ...

Crossrefs

Subsequence of A348629.
The nonexponential version of A004394.
Similar sequences: A002110 (unitary), A037992 (infinitary), A061742, A292984, A329882, A348273.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; s[1] = 1 ;s[n_] := DivisorSigma[1, n] - esigma[n]; seq = {}; rm = -1; Do[r1 = s[n]/n; If[r1 > rm, rm = r1; AppendTo[seq, n]],{n, 1, 10^6}]; seq
Showing 1-6 of 6 results.