A335217 Bi-unitary Zumkeller numbers (A335215) whose set of bi-unitary divisors can be partitioned into two disjoint sets of equal sum in a single way.
6, 56, 60, 70, 72, 80, 88, 90, 104, 736, 800, 832, 928, 992, 1184, 1312, 1376, 1504, 1568, 1696, 1888, 1952, 3230, 3770, 4030, 4510, 5170, 5390, 5800, 5830, 5888, 6808, 7144, 7192, 7400, 7424, 7912, 8056, 8968, 9272, 9656, 9928, 10744, 10792, 11096, 11288, 11392
Offset: 1
Keywords
Examples
56 is a term since there is only one partition of its set of bi-unitary divisors, {1, 3, 4, 5, 12, 15, 20, 60}, into 2 disjoint sets whose sum is equal: 1 + 3 + 4 + 5 + 12 + 15 + 20 = 60.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..250
Programs
-
Mathematica
uDivs[n_] := Select[Divisors[n], CoprimeQ[#, n/#] &]; bDivs[n_] := Select[Divisors[n], Last @ Intersection[uDivs[#], uDivs[n/#]] == 1 &]; bzQ[n_] := Module[{d = bDivs[n], sum, x}, sum = Plus @@ d; If[sum < n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] == 2]]; Select[Range[6000], bzQ]
Comments