cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A335217 Bi-unitary Zumkeller numbers (A335215) whose set of bi-unitary divisors can be partitioned into two disjoint sets of equal sum in a single way.

Original entry on oeis.org

6, 56, 60, 70, 72, 80, 88, 90, 104, 736, 800, 832, 928, 992, 1184, 1312, 1376, 1504, 1568, 1696, 1888, 1952, 3230, 3770, 4030, 4510, 5170, 5390, 5800, 5830, 5888, 6808, 7144, 7192, 7400, 7424, 7912, 8056, 8968, 9272, 9656, 9928, 10744, 10792, 11096, 11288, 11392
Offset: 1

Views

Author

Amiram Eldar, May 27 2020

Keywords

Examples

			56 is a term since there is only one partition of its set of bi-unitary divisors, {1, 3, 4, 5, 12, 15, 20, 60}, into 2 disjoint sets whose sum is equal: 1 + 3 + 4 + 5 + 12 + 15 + 20 = 60.
		

Crossrefs

The bi-unitary version of A083209.
Subsequence of A335215.

Programs

  • Mathematica
    uDivs[n_] := Select[Divisors[n], CoprimeQ[#, n/#] &]; bDivs[n_] := Select[Divisors[n], Last @ Intersection[uDivs[#], uDivs[n/#]] == 1 &]; bzQ[n_] := Module[{d = bDivs[n], sum, x}, sum = Plus @@ d; If[sum < n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] == 2]]; Select[Range[6000], bzQ]

A335216 Bi-unitary Zumkeller numbers (A335215) that are not exponentially odd numbers (A268335).

Original entry on oeis.org

48, 60, 72, 80, 90, 150, 162, 192, 240, 288, 294, 320, 336, 360, 420, 432, 448, 504, 528, 540, 560, 576, 600, 624, 630, 648, 660, 720, 726, 756, 768, 780, 792, 800, 810, 816, 832, 880, 912, 924, 936, 960, 990, 1008, 1014, 1020, 1040, 1050, 1092, 1104, 1134, 1140
Offset: 1

Views

Author

Amiram Eldar, May 27 2020

Keywords

Comments

Zumkeller numbers (A083207) that are exponentially odd (A268335) are also bi-unitary Zumkeller numbers (A335215), since all of their divisors are bi-unitary.

Examples

			48 is a term since it is not exponentially odd number (48 = 2^4 * 3 and 4 is even), and its set of bi-unitary divisors, {1, 2, 3, 6, 8, 16, 24, 48}, can be partitioned into 2 disjoint sets, whose sum is equal: 1 + 2 + 3 + 8 + 16 + 24 = 6 + 48.
		

Crossrefs

Subsequence of A335215.

Programs

  • Mathematica
    uDivs[n_] := Select[Divisors[n], CoprimeQ[#, n/#] &]; bDivs[n_] := Select[Divisors[n], Last @ Intersection[uDivs[#], uDivs[n/#]] == 1 &]; bzQ[n_] := Module[{d = bDivs[n], sum, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]]; expOddQ[n_] := AllTrue[Last /@ FactorInteger[n], OddQ]; Select[Range[1000], !expOddQ[#] && bzQ[#] &]

A339979 Coreful Zumkeller numbers: numbers whose set of coreful divisors can be partitioned into two disjoint sets of equal sum.

Original entry on oeis.org

36, 72, 144, 180, 200, 252, 288, 324, 360, 392, 396, 400, 468, 504, 576, 600, 612, 648, 684, 720, 784, 792, 800, 828, 900, 936, 1008, 1044, 1116, 1152, 1176, 1200, 1224, 1260, 1296, 1332, 1368, 1400, 1440, 1476, 1548, 1568, 1584, 1600, 1620, 1656, 1692, 1764
Offset: 1

Views

Author

Amiram Eldar, Dec 25 2020

Keywords

Comments

A coreful divisor d of a number k is a divisor with the same set of distinct prime factors as k, or rad(d) = rad(k), where rad(k) is the largest squarefree divisor of k (A007947).
The coreful perfect numbers (A307958) are a subsequence.

Examples

			36 is a term since its set of coreful divisors, {6, 12, 18, 36}, can be partitioned into the two disjoint sets, {6, 12, 18} and {36}, whose sums are equal: 6 + 12 + 18 = 36.
		

Crossrefs

A307958 is a subsequence.
Subsequence of A308053.
Similar sequences: A083207, A290466, A335197, A335142, A335215, A335218.

Programs

  • Mathematica
    corZumQ[n_] := Module[{r = Times @@ FactorInteger[n][[;; , 1]], d, sum, x}, d = r * Divisors[n/r]; (sum = Plus @@ d) >= 2*n && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; Select[Range[1800], corZumQ]
  • Python
    from itertools import count, islice
    from sympy import primefactors, divisors
    def A339979_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            f = primefactors(n)
            d = [x for x in divisors(n) if primefactors(x)==f]
            s = sum(d)
            if s&1^1 and n<<1<=s:
                d = d[:-1]
                s2, ld = (s>>1)-n, len(d)
                z = [[0 for  in range(s2+1)] for  in range(ld+1)]
                for i in range(1, ld+1):
                    y = min(d[i-1], s2+1)
                    z[i][:y] = z[i-1][:y]
                    for j in range(y,s2+1):
                        z[i][j] = max(z[i-1][j],z[i-1][j-y]+y)
                    if z[i][s2] == s2:
                        yield n
                        break
    A339979_list = list(islice(A339979_gen(),20)) # Chai Wah Wu, Feb 14 2023

A348527 Noninfinitary Zumkeller numbers: numbers whose set of noninfinitary divisors is nonempty and can be partitioned into two disjoint sets of equal sum.

Original entry on oeis.org

48, 80, 96, 112, 150, 180, 240, 252, 294, 336, 360, 396, 432, 468, 480, 486, 504, 528, 560, 600, 612, 624, 630, 672, 684, 720, 726, 768, 792, 810, 816, 828, 864, 880, 912, 936, 960, 1008, 1014, 1040, 1044, 1050, 1056, 1104, 1116, 1120, 1134, 1176, 1200, 1232, 1248
Offset: 1

Views

Author

Amiram Eldar, Oct 21 2021

Keywords

Comments

The smallest odd term is a(104) = 2475.

Examples

			48 is a term since its set of noninfinitary divisors, {2, 4, 6, 8, 12, 24}, can be partitioned into the two disjoint sets, {2, 6, 8, 12} and {4, 24}, whose sums are equal: 2 + 6 + 8 + 12 = 4 + 24 = 28.
		

Crossrefs

Programs

  • Mathematica
    nidiv[1] = {}; nidiv[n_] := Complement[Divisors[n], Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; nizQ[n_] := Module[{d = nidiv[n], sum, x}, sum = Plus @@ d; sum > 0 && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; Select[Range[1250], !IntegerQ@ Log2@ DivisorSigma[0, #] && nizQ[#] &]
Showing 1-4 of 4 results.