A222300 Length of the closed curve through Gaussian primes described in A222298.
32, 48, 1316, 72, 1536, 168, 168, 152, 152, 1536, 140, 352, 352, 132, 172, 280, 648, 132, 92, 12, 96, 32, 332, 332, 460, 30492, 652, 328, 460, 30492, 748, 236, 64, 112, 204, 336, 336, 24560, 24560, 448, 440, 13016, 1536, 316, 108, 2224, 132, 116, 864, 80, 1128
Offset: 1
Keywords
Examples
The loop beginning with 31 is {31, 43, 43 - 8i, 37 - 8i, 37 - 2i, 45 - 2i, 45 - 8i, 43 - 8i, 43, 47, 47 - 2i, 45 - 2i, 45 + 2i, 47 + 2i, 47, 43, 43 + 8i, 45 + 8i, 45 + 2i, 37 + 2i, 37 + 8i, 43 + 8i, 43, 31}. This loop is 168 units long.
References
- Joseph O'Rourke and Stan Wagon, Gaussian prime spirals, Mathematics Magazine, vol. 86, no. 1 (2013), p. 14.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
loop[n_] := Module[{p = n, direction = 1}, lst = {n}; While[While[p = p + direction; ! PrimeQ[p, GaussianIntegers -> True]]; direction = direction*(-I); AppendTo[lst, p]; ! (p == n && direction == 1)]; Length[lst]]; cp = Select[Range[1000], PrimeQ[#, GaussianIntegers -> True] &]; Table[loop[p]; Total[Abs[Differences[lst]]], {p, cp}]
Comments