cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222310 Array read by antidiagonals: first row is 1, 2, 3, 4, ...; for subsequent rows, write i*j/gcd(i,j)^2 under ...i.j... in previous row.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 6, 2, 12, 4, 5, 30, 15, 20, 5, 15, 3, 10, 6, 30, 6, 105, 7, 21, 210, 35, 42, 7, 70, 6, 42, 2, 420, 12, 56, 8, 1, 70, 105, 10, 5, 84, 63, 72, 9, 5, 5, 14, 30, 3, 15, 1260, 20, 90, 10, 33, 165, 33, 462, 385, 1155, 77, 1980, 99, 110, 11, 55, 15, 11, 3, 154, 10, 462, 6, 330, 30, 132, 12, 65, 143, 2145, 195, 65, 10010, 1001, 78
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2013

Keywords

Examples

			Array begins:
1...2...3.....4......5......6.....7.....8.....9.....10
..2...6....12....20.....30....42.....56...72.....90
....3...2....15......6.....35....12....63....20
......6....30....10....210...420.....84..1260
........5.....3.....21......2.....5....15
...........15.....7.....42....10......3
.............105.....6.....105...30
........
		

Crossrefs

Cf. A036262. Leading diagonal is A222311 (cf. A222313).
Similar array with primes in the starting row is A255483.

Programs

  • Maple
    # To get first M rows of the array (s0 is A222311):
    g:=(i,j)->i*j/gcd(i,j)^2;
    M:=50;
    s0:=[1]:
    s1:=[seq(n,n=1..M)]:
    for i1 from 1 to M-1 do
    lprint(s1);
    s2:=[seq(g(s1[i],s1[i+1]),i=1..nops(s1)-1)];
    s0:=[op(s0),s2[1]];
    s1:=[seq(s2[i],i=1..nops(s2))];
    od:
    # To produce A222310 (i.e., to read the array by antidiagonals):
    g:=(i,j)->i*j/gcd(i,j)^2;
    M:=15;
    b1:=Array(1..M);
    s0:=[1]:
    s1:=[seq(n,n=1..M)]:
    b1[1]:=s1;
    for i1 from 1 to M-1 do
    #lprint(s1);
    s2:=[seq(g(s1[i],s1[i+1]),i=1..nops(s1)-1)];
    b1[i1+1]:=s2;
    s0:=[op(s0),s2[1]];
    s1:=[seq(s2[i],i=1..nops(s2))];
    od:
    #[seq(s0[i],i=1..nops(s0))]; (that gives A222311)
    lis:=[]:
    for i from 1 to M do for j from 1 to i do
    lis:=[op(lis),b1[i-j+1][j]];
    od: od:
    [seq(lis[k],k=1..nops(lis))];
  • Mathematica
    a = r = {1}; Do[a = Join[a, Reverse[r = FoldList[#1*#2/GCD[#1, #2]^2 &, n, r]]], {n, 2, 13}]; a (* Ivan Neretin, May 14 2015 *)