cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A222313 A222311 sorted and duplicates removed (conjectured).

Original entry on oeis.org

1, 2, 3, 5, 6, 15, 17, 33, 41, 55, 57, 65, 70, 105, 129, 257, 273, 385, 561, 897, 969, 1001, 1105, 1353, 1430, 1785, 2049, 2145, 2337, 2665, 3553, 4097, 4305, 4745, 4845, 5633, 6105, 6545, 8193, 8385
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2013

Keywords

Comments

Obtained by sorting and removing duplicates from the first 500 terms of A222311. There is no proof as yet that this list is complete up to 105. Only the first three terms shown are certain. Is there a proof that 4 cannot appear?

Crossrefs

Programs

  • Mathematica
    terms = 40; nmax0 = 5000;
    seq[nmax_] := seq[nmax] = Union[Print[nmax]; Join[r = {1}, Table[Reverse[r = FoldList[#1*(#2/GCD[#1, #2]^2) & , n, r]], {n, 2, nmax}][[All, 1]]]][[1 ;; terms]];
    seq[nmax = nmax0]; seq[nmax = 2 nmax]; While[seq[nmax] == seq[nmax/2], nmax = 2 nmax]; seq[nmax] (* Jean-François Alcover, Sep 04 2018, after Ivan Neretin in A222310 *)

Extensions

Corrected and extended using data from Cobeli et al., 2015. - N. J. A. Sloane, Aug 27 2016
More terms (computed from a list of 10000) from Jean-François Alcover, Sep 04 2018

A275914 A close cousin of A222311 (see Cobeli et al. 2015 for precise definition).

Original entry on oeis.org

1, 2, 3, 3, 5, 15, 105, 35, 3, 15, 11, 165, 195, 91, 3003, 2145, 17, 51, 969, 1615, 1785, 19635, 37145, 245157, 255, 221, 53295, 4849845, 44863, 16269, 14325749295, 6678671, 33, 561, 385
Offset: 1

Views

Author

N. J. A. Sloane, Aug 27 2016

Keywords

Crossrefs

Cf. A222311.

A222310 Array read by antidiagonals: first row is 1, 2, 3, 4, ...; for subsequent rows, write i*j/gcd(i,j)^2 under ...i.j... in previous row.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 6, 2, 12, 4, 5, 30, 15, 20, 5, 15, 3, 10, 6, 30, 6, 105, 7, 21, 210, 35, 42, 7, 70, 6, 42, 2, 420, 12, 56, 8, 1, 70, 105, 10, 5, 84, 63, 72, 9, 5, 5, 14, 30, 3, 15, 1260, 20, 90, 10, 33, 165, 33, 462, 385, 1155, 77, 1980, 99, 110, 11, 55, 15, 11, 3, 154, 10, 462, 6, 330, 30, 132, 12, 65, 143, 2145, 195, 65, 10010, 1001, 78
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2013

Keywords

Examples

			Array begins:
1...2...3.....4......5......6.....7.....8.....9.....10
..2...6....12....20.....30....42.....56...72.....90
....3...2....15......6.....35....12....63....20
......6....30....10....210...420.....84..1260
........5.....3.....21......2.....5....15
...........15.....7.....42....10......3
.............105.....6.....105...30
........
		

Crossrefs

Cf. A036262. Leading diagonal is A222311 (cf. A222313).
Similar array with primes in the starting row is A255483.

Programs

  • Maple
    # To get first M rows of the array (s0 is A222311):
    g:=(i,j)->i*j/gcd(i,j)^2;
    M:=50;
    s0:=[1]:
    s1:=[seq(n,n=1..M)]:
    for i1 from 1 to M-1 do
    lprint(s1);
    s2:=[seq(g(s1[i],s1[i+1]),i=1..nops(s1)-1)];
    s0:=[op(s0),s2[1]];
    s1:=[seq(s2[i],i=1..nops(s2))];
    od:
    # To produce A222310 (i.e., to read the array by antidiagonals):
    g:=(i,j)->i*j/gcd(i,j)^2;
    M:=15;
    b1:=Array(1..M);
    s0:=[1]:
    s1:=[seq(n,n=1..M)]:
    b1[1]:=s1;
    for i1 from 1 to M-1 do
    #lprint(s1);
    s2:=[seq(g(s1[i],s1[i+1]),i=1..nops(s1)-1)];
    b1[i1+1]:=s2;
    s0:=[op(s0),s2[1]];
    s1:=[seq(s2[i],i=1..nops(s2))];
    od:
    #[seq(s0[i],i=1..nops(s0))]; (that gives A222311)
    lis:=[]:
    for i from 1 to M do for j from 1 to i do
    lis:=[op(lis),b1[i-j+1][j]];
    od: od:
    [seq(lis[k],k=1..nops(lis))];
  • Mathematica
    a = r = {1}; Do[a = Join[a, Reverse[r = FoldList[#1*#2/GCD[#1, #2]^2 &, n, r]]], {n, 2, 13}]; a (* Ivan Neretin, May 14 2015 *)
Showing 1-3 of 3 results.