cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222361 Fibonacci-Legendre quotients: (Fibonacci(p) - L(p/5)) / p, where p = prime(n) and L(p/5) is the Legendre symbol.

Original entry on oeis.org

1, 1, 1, 2, 8, 18, 94, 220, 1246, 17732, 43428, 652914, 4038540, 10081266, 63217342, 1005967758, 16215627560, 41061160360, 670829406162, 4338894664368, 11048157986978, 183194101578180, 1195118711985006, 19999768719154092, 862073644225241474, 5674731128849674100, 14568160545698020226, 96118885585174929102, 247025215671874138312, 1633201998168434481118
Offset: 1

Views

Author

Jonathan Sondow, Feb 23 2013

Keywords

Comments

Fibonacci(p) == L(p/5) mod p, where the Legendre symbol L(p/5) equals 0, +1, -1 according as p = 5, 5*k+-1, 5*k+-2 for some k.
Not to be confused with Fibonacci(p - L(p,5)) / p, which is A092330.

Examples

			Prime(4) = 7, so a(4) = (Fibonacci(7)-L(7/5))/7 = (13-(-1))/7 = 14/7 = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[p = Prime[n]; (Fibonacci[p] - JacobiSymbol[p, 5])/p, {n, 1, 30}]

Formula

For n>=4, a(n) = (Fibonacci(prime(n)) +/- 1)/prime(n), where '+' is chosen if prime(n)== 2 or 3 (mod 5), '-' is chosen otherwise. For n>=2, a(n) = round(Fibonacci(prime(n))/prime(n)). - Vladimir Shevelev, Mar 12 2014