A222361 Fibonacci-Legendre quotients: (Fibonacci(p) - L(p/5)) / p, where p = prime(n) and L(p/5) is the Legendre symbol.
1, 1, 1, 2, 8, 18, 94, 220, 1246, 17732, 43428, 652914, 4038540, 10081266, 63217342, 1005967758, 16215627560, 41061160360, 670829406162, 4338894664368, 11048157986978, 183194101578180, 1195118711985006, 19999768719154092, 862073644225241474, 5674731128849674100, 14568160545698020226, 96118885585174929102, 247025215671874138312, 1633201998168434481118
Offset: 1
Keywords
Examples
Prime(4) = 7, so a(4) = (Fibonacci(7)-L(7/5))/7 = (13-(-1))/7 = 14/7 = 2.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Wikipedia, Prime divisors of Fibonacci numbers
Programs
-
Mathematica
Table[p = Prime[n]; (Fibonacci[p] - JacobiSymbol[p, 5])/p, {n, 1, 30}]
Formula
For n>=4, a(n) = (Fibonacci(prime(n)) +/- 1)/prime(n), where '+' is chosen if prime(n)== 2 or 3 (mod 5), '-' is chosen otherwise. For n>=2, a(n) = round(Fibonacci(prime(n))/prime(n)). - Vladimir Shevelev, Mar 12 2014
Comments