cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222379 Number of distinct functions f representable as x -> x^x^...^x with n x's and parentheses inserted in all possible ways giving result f(0)=0, with conventions that 0^0=1^0=1^1=1, 0^1=0.

Original entry on oeis.org

0, 1, 0, 1, 1, 4, 6, 19, 38, 107, 247, 668, 1666, 4468, 11603, 31210, 83044, 224893, 607658, 1657966, 4528193, 12441364, 34254321, 94696165, 262389581, 729258392, 2031264865, 5671570468, 15867219821, 44480785907, 124913622052, 351393746745, 990048748684
Offset: 0

Views

Author

Alois P. Heinz, Feb 17 2013

Keywords

Comments

A000081(n) distinct functions are representable as x -> x^x^...^x with n x's and parentheses inserted in all possible ways. Some functions are representable in more than one way, the number of valid parenthesizations is A000108(n-1) for n>0.

Examples

			There are A000081(4) = 4 functions f representable as x -> x^x^...^x with 4 x's and parentheses inserted in all possible ways: ((x^x)^x)^x, (x^x)^(x^x) == (x^(x^x))^x, x^((x^x)^x), x^(x^(x^x)).  Only x^((x^x)^x) evaluates to 0 at x=0: 0^((0^0)^0) = 0^(1^0) = 0^1 = 0. Thus a(4) = 1.
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, [0, 1], `if`(i<1, 0, (v->[v[1]-
          v[2], v[2]])(add(((l, h)-> [binomial(l[2]+l[1]+j-1, j)*(h[1]+h[2]),
          binomial(l[1]+j-1, j)*h[2]])(g(i-1$2), g(n-i*j, i-1)), j=0..n/i))))
        end:
    a:= n-> g(n-1$2)[2]:
    seq(a(n), n=0..40);
  • Mathematica
    f[l_, h_] := {Binomial[l[[2]] + l[[1]] + j - 1, j]*(h[[1]] + h[[2]]), Binomial[l[[1]] + j - 1, j]*h[[2]]};
    g[n_, i_] := g[n, i] = If[n == 0, {0, 1}, If[i < 1, {0, 0}, Function[v, {v[[1]] - v[[2]], v[[2]]}][Sum[f[g[i - 1, i - 1], g[n - i*j, i - 1]], {j, 0, Quotient[n, i]}]]]];
    a[n_] := g[n - 1, n - 1][[2]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 27 2019, after Alois P. Heinz *)

Formula

A222380(n) + a(n) = A000081(n).
A222380(n) - a(n) = A211192(n).
a(n) = Sum_{i=A087803(n-1)+1..A087803(n)} (1-A306710(i)).