A222403 Triangle read by rows: left and right edges are A000217, interior entries are filled in using the Pascal triangle rule.
0, 1, 1, 3, 2, 3, 6, 5, 5, 6, 10, 11, 10, 11, 10, 15, 21, 21, 21, 21, 15, 21, 36, 42, 42, 42, 36, 21, 28, 57, 78, 84, 84, 78, 57, 28, 36, 85, 135, 162, 168, 162, 135, 85, 36, 45, 121, 220, 297, 330, 330, 297, 220, 121, 45, 55, 166, 341, 517, 627, 660, 627, 517, 341, 166, 55
Offset: 0
Examples
Triangle begins: 0 1, 1 3, 2, 3 6, 5, 5, 6 10, 11, 10, 11, 10 15, 21, 21, 21, 21, 15 21, 36, 42, 42, 42, 36, 21 28, 57, 78, 84, 84, 78, 57, 28 ...
Links
- Robert Israel, Table of n, a(n) for n = 0..10010
Crossrefs
Programs
-
Maple
d:=[seq(n*(n+1)/2,n=0..14)]; f:=proc(d) local T,M,n,i; M:=nops(d); T:=Array(0..M-1,0..M-1); for n from 0 to M-1 do T[n,0]:=d[n+1]; T[n,n]:=d[n+1]; od: for n from 2 to M-1 do for i from 1 to n-1 do T[n,i]:=T[n-1,i-1]+T[n-1,i]; od: od: lprint("triangle:"); for n from 0 to M-1 do lprint(seq(T[n,i],i=0..n)); od: lprint("row sums:"); lprint([seq( add(T[i,j],j=0..i), i=0..M-1)]); end; f(d);
-
Mathematica
t[n_, n_] := n*(n+1)/2; t[n_, 0] := n*(n+1)/2; t[n_, k_] := t[n, k] = t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
Formula
G.f. as triangle: (1+x-4*x*y+x*y^2+x^2*y^2)*y/((1-y)^2*(-x*y+1)^2*(-x*y-y+1)). - Robert Israel, Apr 04 2018
Comments