cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222465 a(n) = 4*n^2 + 3.

Original entry on oeis.org

3, 7, 19, 39, 67, 103, 147, 199, 259, 327, 403, 487, 579, 679, 787, 903, 1027, 1159, 1299, 1447, 1603, 1767, 1939, 2119, 2307, 2503, 2707, 2919, 3139, 3367, 3603, 3847, 4099, 4359, 4627, 4903, 5187, 5479, 5779, 6087, 6403, 6727, 7059, 7399, 7747, 8103, 8467, 8839
Offset: 0

Views

Author

Wolfdieter Lang, Mar 01 2013

Keywords

Comments

2/a(n) = R(n)/r, n >= 0, with R(n) the n-th radius of the clockwise Pappus chain of the arbelos with semicircle radii r, r1 = 2r/3, r2 = r/3. See the MathWorld link for Pappus chain (there only the counterclockwise chain is shown). The counterclockwise chain companion has circle radii R(n)/r = 2/A114949(n), n >= 0.
Binomial transform of (3, 4, 8, 0, 0, 0, 0, 0, 0, 0, ...). - Philippe Deléham, Mar 07 2013

Examples

			The dimensionless radii R(n)/r of the clockwise Pappus chain for the arbelos (r,r1,r2=r-r1) = r*(1,2/3,1/3) are [2/3, 2/7, 2/19, 2/39, 2/67, 2/103, 2/147, 2/199, ...], for n >= 0. The circle for n=0 has radius r1=2/3 and center (2/3,0) with the origin at the left tip of the arbelos. The n=1 circle coincides with the one of the counterclockwise companion chain.
		

Crossrefs

Programs

Formula

a(n) = 4*n^2 + 3, n >= 0.
O.g.f.: (3 - 2*x + 7*x^2)/(1-x)^3.
a(n) = A016742(n) + 3. - Omar E. Pol, Mar 02 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2, a(0) = 3, a(1) = 7, a(2) = 19. - Philippe Deléham, Mar 05 2013
From Amiram Eldar, Jul 11 2020: (Start)
Sum_{n>=0} 1/a(n) = 1/6 + sqrt(3)*Pi*coth(sqrt(3)*Pi/2)/12.
Sum_{n>=0} (-1)^n/a(n) = 1/6 + sqrt(3)*Pi*cosech(sqrt(3)*Pi/2)/12. (End)
E.g.f.: exp(x)*(3 + 4*x + 4*x^2). - Elmo R. Oliveira, Jan 17 2025