A222466 Decimal expansion of the limit of the continued fraction 1/(1+2/(2+2/(3+2/(4+... in terms of Bessel functions.
5, 6, 3, 1, 7, 8, 6, 1, 9, 8, 1, 1, 7, 1, 1, 3, 8, 5, 4, 2, 5, 7, 5, 2, 9, 0, 3, 7, 0, 3, 5, 6, 3, 5, 5, 3, 2, 7, 6, 0, 5, 2, 2, 5, 4, 8, 6, 4, 0, 4, 3, 4, 9, 2, 4, 1, 2, 9, 8, 4, 8, 2, 1, 9, 0, 9, 7, 7, 6, 9, 0, 4, 4, 0, 7, 6, 2, 4, 6, 0, 3, 0, 2, 5, 5, 7, 2, 4, 8, 9, 1, 9, 5, 1, 8, 6, 1, 1, 3, 7, 5, 8, 5, 3, 8
Offset: 0
Examples
0.5631786198117113854257529037035635...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
Programs
-
Mathematica
RealDigits[BesselI[1, 2*Sqrt[2]]/(Sqrt[2]*BesselI[0, 2*Sqrt[2]]), 10, 50][[1]] (* G. C. Greubel, Aug 16 2017 *)
-
PARI
default(realprecision, 120); sqrt(2)*besseli(1,2*sqrt(2))/(2*besseli(0,2*sqrt(2))) \\ Rick L. Shepherd, Jan 18 2014
Formula
(0 + K_{k=1..oo} (2/k))/2 = 1/(1+2/(2+2/(3+2/(4+ ... =
sqrt(2)*BesselI(1,2*sqrt(2))/(2*BesselI(0,2*sqrt(2)))
Extensions
Offset corrected and terms added by Rick L. Shepherd, Jan 18 2014
Comments