A222471 Decimal expansion of the negative of the limit of the continued fraction 1/(1-2/(2-2/(3-2/(4-... in terms of Bessel functions.
1, 4, 3, 9, 7, 4, 9, 3, 2, 1, 8, 7, 0, 2, 3, 2, 8, 0, 5, 8, 9, 5, 7, 0, 6, 9, 5, 7, 4, 1, 1, 2, 2, 7, 4, 2, 5, 1, 5, 2, 7, 3, 3, 7, 6, 2, 2, 3, 8, 1, 1, 6, 1, 7, 5, 2, 8, 1, 4, 5, 3, 0, 7, 8, 8, 7, 7, 2, 3, 6, 1, 6, 8, 1, 6, 4, 3, 4, 5, 9, 6, 3, 8, 5, 0, 1, 9, 5, 1, 3, 1, 8, 5, 9, 7, 7, 0, 4, 8, 7, 6, 3, 4, 1, 7, 8, 7, 4, 0, 2
Offset: 1
Examples
-1.4397493218702328058...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
RealDigits[BesselJ[1, 2*Sqrt[2]]/(Sqrt[2]*BesselJ[0, 2*Sqrt[2]]), 10, 50][[1]] (* G. C. Greubel, Aug 16 2017 *)
-
PARI
besselj(1,sqrt(8))/besselj(0,sqrt(8))/sqrt(2) \\ Charles R Greathouse IV, Feb 19 2014
Formula
Equals (1/2)*sqrt(2)*BesselJ(1,2*sqrt(2))/BesselJ(0,2*sqrt(2)).
Comments