A222472 Numerator sequence of the n-th convergent of the continued fraction 1/(1+3/(2+3/(3+3/(4+...
1, 2, 9, 42, 237, 1548, 11547, 97020, 907821, 9369270, 105785433, 1297533006, 17185285377, 244486594296, 3718854770571, 60235136112024, 1035153878216121, 18813475216226250, 360561490742947113, 7267670240507621010
Offset: 1
Examples
a(4) = 4*a(3) + 2*a(2) = 4*9 + 3*2 = 42. Continued fraction convergent: 1/(1+3/(2+3/(3+3/4))) = 14/29 = 42/87 = a(4)/A213190(4). Morse code: a(5) = 237 from the sum of all 5 labeled codes on [2,3,4,5], one with no dash, three with one dash and one with two dashes: 5!/1 + (4*5 + 2*5 + 2*3)*(3) +3^2 = 237.
Programs
-
PARI
a=vector(50); a[1]=1;a[2]=2; for(n=3, #a, a[n]=n*a[n-1]+3*a[n-2]); a \\ Altug Alkan, Apr 20 2018
Formula
Recurrence: a(n) = n*a(n-1) + 3*a(n-2), with a(-1) = 1/3, a(0) = 0, n >= 1.
As a sum: a(n) = Sum_{m=0..floor(n/2)} b(n-m,m)*3^m, n >= 1, with b(n,m) = binomial(n,m)*(n+1)!/(m+1)! = |A066667(n,m)| (Laguerre coefficients, parameter alpha =1).
Explicit form: a(n) = -2*(sqrt(3))^n*(BesselK(1, -2*sqrt(3))*BesselI(n+1, -2*sqrt(3)) + (-1)^(n+1)*BesselI(1,-2*sqrt(3))*BesselK(n+1,-2*sqrt(3))).
E.g.f.: Pi*(BesselJ(1, 2*I*sqrt(3)*sqrt(1-z))*BesselY(1, 2*I*sqrt(3)) - BesselY(1, (2*I)*sqrt(3)*sqrt(1-z))*BesselJ(1, 2*I*sqrt(3)))/sqrt(1-z). Here Phat(0,x) = 0.
Asymptotics: lim_{n->oo} a(n)/n! = BesselI(1,2*sqrt(3))/(sqrt(3)) = 3.468649618760...
Comments