cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A222480 Decimal expansion of cos(1)/(1+cos(1)).

Original entry on oeis.org

3, 5, 0, 7, 7, 6, 7, 9, 4, 7, 9, 5, 2, 3, 7, 5, 8, 1, 5, 5, 8, 1, 1, 6, 7, 5, 0, 5, 7, 2, 8, 2, 0, 1, 7, 1, 1, 0, 3, 8, 5, 7, 2, 3, 8, 9, 2, 2, 5, 4, 9, 7, 9, 7, 6, 4, 3, 9, 9, 4, 8, 4, 2, 1, 4, 8, 4, 7, 2, 6, 5, 0, 7, 8, 7, 0, 9, 7, 9, 0, 9, 0, 8, 9, 3, 4, 4, 0, 1, 1, 0, 7, 4, 1, 8, 8, 7, 3, 1, 1, 5, 0, 8, 1, 2, 7, 9, 2, 4, 2, 2, 5, 0, 1, 4, 1, 6, 3, 2, 8, 6, 2
Offset: 0

Views

Author

Alois P. Heinz, Feb 21 2013

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			0.35077679479523758155811675...
		

Crossrefs

Cf. A222481 (continued fraction), A222482 (Engel expansion), A049470 (cos(1)), A073448 (1/cos(1)).

Programs

  • Maple
    s:= convert(evalf(1/(1+1/cos(1)), 140), string):
    seq(parse(s[n+2]), n=0..122);
  • PARI
    1/(1+1/cos(1)) \\ Charles R Greathouse IV, May 13 2019

Formula

cos(1)/(1+cos(1)) = 1/(1+1/cos(1)) = 1/(1+sec(1)).

A222482 Engel expansion of cos(1)/(1+cos(1)).

Original entry on oeis.org

3, 20, 22, 40, 68, 248, 7163, 28663, 50059, 64574, 638169, 761733, 2537764, 2925739, 3363073, 4977902, 5646039, 57212854, 159650555, 219684539, 453524713, 459239955, 2002180165, 3234082460, 14965375439, 50298730245, 89316768769, 464076054936, 520232391320
Offset: 1

Views

Author

Alois P. Heinz, Feb 21 2013

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

Examples

			0.35077679479523758155811675...
		

Crossrefs

Cf. A222480 (decimal expansion), A222481 (continued fraction), A049470 (cos(1)), A073448 (1/cos(1)).

Programs

  • Maple
    Digits:= 1000:
    b:= evalf(1/(1+1/cos(1))):  engel:= (r, n)-> `if`(n=0 or r=0, NULL, [ceil(1/r), engel(r*ceil(1/r)-1, n-1)][]):
    engel(b, 39);

Formula

cos(1)/(1+cos(1)) = 1/(1+1/cos(1)) = 1/(1+sec(1)).
Showing 1-2 of 2 results.