cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222589 G.f. satisfies: A(x) = Sum_{n>=0} x^n*(1 + n*x)^n * A(x)^n / (1 + x*A(x) + n*x^2*A(x))^n.

Original entry on oeis.org

1, 1, 2, 5, 14, 41, 128, 409, 1355, 4564, 15728, 54904, 194740, 698042, 2532483, 9270351, 34268276, 127677731, 479723132, 1815553953, 6923744832, 26587139445, 102838915279, 400513959602, 1571152132075, 6206954038519, 24705172805012, 99071049959707, 400475021255313
Offset: 0

Views

Author

Paul D. Hanna, Feb 25 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 41*x^5 + 128*x^6 + 409*x^7 +...
where:
A(x) = 1 + x*(1+x)*A(x)/(1+x*(1+x)*A(x)) + x^2*(1+2*x)^2*A(x)^2/(1+x*(1+2*x)*A(x))^2 + x^3*(1+3*x)^3*A(x)^3/(1+x*(1+3*x)*A(x))^3 + x^4*(1+4*x)^4*A(x)^4/(1+x*(1+4*x)*A(x))^4 +...
Also,
A(x) = 1/2 + (1 + 2*x*A(x))/2 * (1 + 2*x^2*A(x) + 6*x^4*A(x)^2 + 24*x^6*A(x)^3 + 120*x^8*A(x)^4 + 720*x^10*A(x)^5 + 5040*x^12*A(x)^6 +...).
		

Crossrefs

Cf. A187741.

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0, n, (x+m*x^2)^m*A^m / (1 + x*A+m*x^2*A +x*O(x^n))^m));polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1/2+(1+2*x*A)*sum(k=0,n,(k+1)!/2*x^(2*k)*(A+x*O(x^n))^k));polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = 1/2 + (1 + 2*x*A(x))/2 * Sum_{n>=0} (n+1)! * x^(2*n) * A(x)^n.