A222595 Number of different Gaussian primes in the Gaussian prime spiral beginning at the n-th first-quadrant Gaussian prime (A222593).
4, 24, 24, 4, 8, 22, 22, 8, 4, 8, 4, 22, 8, 4, 10, 92, 4, 92, 10, 10, 22, 22, 10, 22, 22, 4, 172, 10, 10, 92, 10, 10, 92, 92, 4, 10, 4, 10, 172, 4, 4, 10, 172, 92, 10, 172, 172, 4, 4, 172, 172, 172, 92, 10, 92, 28, 172, 4, 12, 92, 10, 10, 172, 92, 4, 12, 172, 28
Offset: 1
Keywords
References
- Joseph O'Rourke and Stan Wagon, Gaussian prime spirals, Mathematics Magazine, vol. 86, no. 1 (2013), p. 14.
Links
- T. D. Noe, Table of n, a(n) for n = 1..2829
Crossrefs
Cf. A222298 (spiral lengths beginning at the n-th positive real Gaussian prime).
Programs
-
Mathematica
loop[n_] := Module[{p = n, direction = 1}, lst = {n}; While[While[p = p + direction; ! PrimeQ[p, GaussianIntegers -> True]]; direction = direction*(-I); AppendTo[lst, p]; ! (p == n && direction == 1)]; Length[lst]]; nn = 20; ps = {}; Do[If[PrimeQ[i + (j - i) I, GaussianIntegers -> True], AppendTo[ps, i + (j-i)*I]], {j, 0, nn}, {i, 0, j}]; Table[loop[ps[[n]]]; Length[Union[lst]], {n, Length[ps]}]
Comments