A222298 Length of the Gaussian prime spiral beginning at the n-th positive real Gaussian prime (A002145).
12, 12, 260, 12, 236, 28, 28, 28, 28, 236, 20, 44, 44, 20, 20, 36, 76, 12, 12, 4, 12, 4, 36, 36, 36, 3276, 76, 36, 36, 3276, 84, 20, 12, 12, 20, 36, 36, 2444, 2444, 36, 44, 1356, 156, 28, 12, 220, 12, 12, 84, 12, 132, 28, 68, 36, 36, 1044, 20, 20, 28, 1044, 20
Offset: 1
Keywords
Examples
The loop beginning with 31 is {31, 43, 43 - 8i, 37 - 8i, 37 - 2i, 45 - 2i, 45 - 8i, 43 - 8i, 43, 47, 47 - 2i, 45 - 2i, 45 + 2i, 47 + 2i, 47, 43, 43 + 8i, 45 + 8i, 45 + 2i, 37 + 2i, 37 + 8i, 43 + 8i, 43, 31, 31 + 4i, 41 + 4i, 41 - 4i, 31 - 4i, 31}. The first and last numbers are the same. So only one is counted.
References
- Joseph O'Rourke and Stan Wagon, Gaussian prime spirals, Mathematics Magazine, vol. 86, no. 1 (2013), p. 14.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- T. D. Noe, Plot beginning with 11 (similar to the cover of Mathematics Magazine, vol. 86, no. 1 (2013))
- Joseph O'Rourke, MathOverflow: Gaussian prime spirals
Programs
-
Mathematica
loop[n_] := Module[{p = n, direction = 1}, lst = {n}; While[While[p = p + direction; ! PrimeQ[p, GaussianIntegers -> True]]; direction = direction*(-I); AppendTo[lst, p]; ! (p == n && direction == 1)]; Length[lst]]; cp = Select[Range[1000], PrimeQ[#, GaussianIntegers -> True] &]; Table[loop[p]-1, {p, cp}]
Comments