A222655 a(n) = 16*n^4 + 4.
4, 20, 260, 1300, 4100, 10004, 20740, 38420, 65540, 104980, 160004, 234260, 331780, 456980, 614660, 810004, 1048580, 1336340, 1679620, 2085140, 2560004, 3111700, 3748100, 4477460, 5308420, 6250004, 7311620, 8503060, 9834500, 11316500, 12960004, 14776340
Offset: 0
Examples
For n=1, the two squares are 4 and 16; the rectangle is 10 X 2. For n=2, the two squares are 4 and 256; the rectangle is 26 X 10.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A211412.
Programs
-
Mathematica
16*Range[0,40]^4+4 (* or *) LinearRecurrence[{5,-10,10,-5,1},{4,20,260,1300,4100},40] (* Harvey P. Dale, Nov 28 2014 *)
-
PARI
a(n)=16*n^4+4 \\ Charles R Greathouse IV, Mar 21 2013
Formula
2^2 + (4*n^2)^2 = (4*n^2 + 4*n + 2)*(4*n^2 - 4*n + 2).
a(n) = 4 * A211412(n).
From Amiram Eldar, May 18 2023: (Start)
Sum_{n>=0} 1/a(n) = tanh(Pi/2)*Pi/16 + 1/8.
Sum_{n>=0} (-1)^n/a(n) = 1/8 + sech(Pi/2)*Pi/16. (End)
Comments