cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222705 Total number of parts of multiplicity 5 in all partitions of n.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 5, 5, 9, 11, 17, 21, 31, 37, 53, 67, 90, 113, 151, 186, 246, 305, 392, 486, 620, 762, 962, 1181, 1473, 1802, 2235, 2716, 3345, 4056, 4956, 5990, 7283, 8759, 10598, 12709, 15297, 18283, 21917, 26099, 31165, 37009, 44014, 52113, 61776, 72918
Offset: 5

Views

Author

Alois P. Heinz, Feb 28 2013

Keywords

Crossrefs

Column k=5 of A197126.

Programs

  • Maple
    b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
          add((l->`if`(m=5, l+[0, l[1]], l))(b(n-p*m, p-1)), m=0..n/p)))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=5..60);
  • Mathematica
    b[n_, p_] := b[n, p] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[Function[l, If[m == 5, l + {0, l[[1]]}, l]][b[n - p*m, p - 1]], {m, 0, n/p}]]];
    a[n_] := b[n, n][[2]];
    Table[a[n], {n, 5, 60}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)

Formula

G.f.: (x^5/(1-x^5)-x^6/(1-x^6))/Product_{j>0}(1-x^j).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (60*Pi*sqrt(2*n)). - Vaclav Kotesovec, May 24 2018