A222732 Total sum of parts of multiplicity 4 in all partitions of n.
1, 0, 1, 1, 4, 4, 6, 8, 16, 19, 30, 36, 59, 73, 106, 135, 191, 242, 331, 420, 569, 712, 941, 1183, 1546, 1931, 2476, 3087, 3933, 4872, 6137, 7568, 9471, 11629, 14427, 17647, 21758, 26499, 32470, 39393, 48030, 58028, 70385, 84749, 102348, 122794, 147633, 176554
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
Crossrefs
Column k=4 of A222730.
Programs
-
Maple
b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0], add((l->`if`(m=4, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p))) end: a:= n-> b(n, n)[2]: seq(a(n), n=4..55);
-
Mathematica
b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[6]]; Table[a[n], {n, 4, 55}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
Formula
G.f.: (x^4/(1-x^4)^2-x^5/(1-x^5)^2)/Product_{i>=1}(1-x^i).
a(n) ~ 9 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (800 * Pi^2). - Vaclav Kotesovec, May 29 2018