cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222733 Total sum of parts of multiplicity 5 in all partitions of n.

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 6, 6, 11, 14, 23, 29, 43, 52, 76, 100, 135, 174, 235, 294, 397, 500, 651, 821, 1060, 1324, 1692, 2107, 2658, 3297, 4139, 5089, 6339, 7778, 9604, 11746, 14425, 17533, 21427, 25960, 31548, 38080, 46070, 55375, 66718, 79957, 95906, 114555
Offset: 5

Views

Author

Alois P. Heinz, Mar 03 2013

Keywords

Crossrefs

Column k=5 of A222730.

Programs

  • Maple
    b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
          add((l->`if`(m=5, l+[0, l[1]*p], l))(b(n-p*m, p-1)), m=0..n/p)))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=5..55);
  • Mathematica
    b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[7]]; Table[a[n], {n, 5, 55}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)

Formula

G.f.: (x^5/(1-x^5)^2-x^6/(1-x^6)^2)/Product_{i>=1}(1-x^i).
a(n) ~ 11 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (1800 * Pi^2). - Vaclav Kotesovec, May 29 2018