A222752 Irregular array of odd numbers T(n,k) such that the difference between the number of halving and tripling steps in the Collatz (3x+1) iteration is n.
1, 3, 5, 13, 21, 7, 11, 17, 9, 15, 23, 35, 53, 85, 19, 29, 45, 69, 75, 113, 25, 37, 61, 93, 141, 151, 213, 227, 341, 33, 49, 51, 77, 81, 117, 181, 201, 277, 301, 453, 43, 65, 67, 99, 101, 149, 163, 241, 245, 267, 369, 373, 401, 403, 565, 605, 853, 909, 1365
Offset: 0
Examples
The rows are {1}, {}, {}, {3, 5}, {}, {13, 21}, {7, 11, 17}, {9, 15, 23, 35, 53, 85}, {19, 29, 45, 69, 75, 113}, {25, 37, 61, 93, 141, 151, 213, 227, 341}, {33, 49, 51, 77, 81, 117, 181, 201, 277, 301, 453}
Links
Programs
-
Mathematica
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; nn = 15; t = Table[{}, {nn}]; Do[c = Collatz[n]; e = Select[c, EvenQ]; diff = 2*Length[e] - Length[c]; If[diff < nn - 1, AppendTo[t[[diff + 2]], n]], {n, 1, 2^(nn - 1), 2}]; t
Comments