A222754 Least odd number k such that difference between halving and tripling steps in Collatz (3x+1) trajectory of k is n, or 0 if there is no such k.
1, 0, 0, 3, 0, 13, 7, 9, 19, 25, 33, 43, 39, 79, 105, 135, 123, 169, 159, 295, 283, 111, 223, 297, 175, 103, 91, 121, 31, 27, 55, 73, 97, 129, 171, 231, 313, 411, 543, 327, 649, 859, 763, 1017, 1351, 1215, 703, 937, 871, 1161, 2223, 3097, 2631, 3567, 3175, 4233
Offset: 0
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
Programs
-
Mathematica
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; nn = 51; t = Table[0, {nn}]; n = -1; While[Min[Drop[t, 5]] == 0, n = n + 2; c = Collatz[n]; e = Select[c, EvenQ]; diff = 2*Length[e] - Length[c]; If[diff < nn - 1 && t[[diff + 2]] == 0, t[[diff + 2]] = n]]; t