A222883 Decimal expansion of Sierpiński's third constant, K3 = lim_{n->oo} ((1/n) * (Sum_{i=1..n} (A004018(i))^2) - 4* log(n)).
8, 0, 6, 6, 4, 8, 6, 1, 8, 2, 9, 3, 3, 6, 3, 2, 4, 6, 1, 0, 5, 1, 1, 8, 7, 4, 3, 8, 8, 6, 0, 4, 6, 1, 7, 0, 5, 8, 0, 0, 7, 3, 6, 7, 1, 0, 0, 9, 4, 5, 8, 9, 9, 2, 2, 4, 4, 3, 6, 7, 7, 1, 3, 3, 7, 9, 1, 2, 5, 7, 3, 6, 6, 4, 6, 4, 7, 3, 1, 1, 4, 9, 0, 2, 1, 6, 5, 4, 0, 5, 5, 9, 3, 2, 2, 4, 7, 2, 1, 6, 7, 8, 1, 5, 1
Offset: 1
Examples
K3 = 8.066486182933632461051187438860461705800736710094589922443677...
References
- Steven R. Finch, Mathematical Constants, Encyclopaedia of Mathematics and its Applications, Cambridge University Press (2003), p.123. Corrigenda in the link below.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Steven R. Finch, Errata and Addenda to Mathematical Constants, (June 2012), pp. 15-16.
- A. Schinzel, Wacław Sierpiński’s papers on the theory of numbers, Acta Arithmetica XXI, (1972), pp. 7-13. Corrigenda in "Dzieje Matematyki Polskiej" (Wrocław 2012), p.228 (in Polish).
Programs
-
Mathematica
Take[RealDigits[N[4/3 (24*Log[Gamma[3/4]] - 12*Log[Pi] + 72*Log[Glaisher] - 5*Log[2] + 6*EulerGamma - 3), 100]][[1]], 86]
-
PARI
4*log(exp(5*Euler-1)/(2^(5/3)/agm(sqrt(2),1)^4))-48/Pi^2*zeta'(2) - 4*Euler \\ Charles R Greathouse IV, Dec 12 2013
Formula
K3 = 8*K / Pi - 48 / Pi^2 * zeta'(2) + 4 * log(2) / 3 - 4, where K is Sierpinski's first constant (A062089).
K3 = 4 / 3 * log(A^72 * e^(6 * eulergamma - 3)*( Gamma(3/4))^24 / (32 * pi^12)), where A is the Glaisher-Kinkelin constant (A074962) and eulergamma is the Euler-Mascheroni constant (A001620).
K3 = 4*log(exp(5*eulergamma - 1) / (2^(5 / 3) * G^4)) - 48 / Pi^2 * zeta'(2) - 4* eulergamma, where G is Gauss’ AGM constant (A014549).
K3 = 4*log(Pi^4 * e^(5*eulergamma - 1) / (2^(5 / 3) * L^4)) - 48 / Pi^2 * zeta'(2) - 4* eulergamma, where L is Gauss’ lemniscate constant (A062539).
K3 = 4*K / Pi + Pi * K2 - 4 * eulergamma, where K2 is Sierpiński's second constant (A222882).
1 / 4 * K3 - 1 / 4 * Pi * K2 - log(pi^2 / (2 * L^2)) = eulergamma.
1 / 4 * K3 - 1 / 4 * Pi * K2 + log(2 * G^2) = eulergamma.
Extensions
More terms from Robert G. Wilson v, Oct 19 2013
Comments