A222946 Triangle for hypotenuses of primitive Pythagorean triangles.
5, 0, 13, 17, 0, 25, 0, 29, 0, 41, 37, 0, 0, 0, 61, 0, 53, 0, 65, 0, 85, 65, 0, 73, 0, 89, 0, 113, 0, 85, 0, 97, 0, 0, 0, 145, 101, 0, 109, 0, 0, 0, 149, 0, 181, 0, 125, 0, 137, 0, 157, 0, 185, 0, 221, 145, 0, 0, 0, 169, 0, 193, 0, 0, 0, 265, 0, 173, 0, 185, 0, 205, 0, 233, 0, 269, 0, 313, 197, 0, 205, 0, 221, 0, 0, 0, 277, 0, 317, 0, 365
Offset: 2
Examples
The triangle a(n,m) begins: n\m 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 2: 5 3: 0 13 4: 17 0 25 5: 0 29 0 41 6: 37 0 0 0 61 7: 0 53 0 65 0 85 8: 65 0 73 0 89 0 113 9: 0 85 0 97 0 0 0 145 10: 101 0 109 0 0 0 149 0 181 11: 0 125 0 137 0 157 0 185 0 221 12: 145 0 0 0 169 0 193 0 0 0 265 13: 0 173 0 185 0 205 0 233 0 269 0 313 14: 197 0 205 0 221 0 0 0 277 0 317 0 365 ... ------------------------------------------------------------ a(7,4) = 7^2 + 4^2 = 49 + 16 = 65. a(8,1) = 8^2 + 1^2 = 64 + 1 = 65. a(3,1) = 0 because n and m are both odd. a(4,2) = 0 because n and m are both even. a(6,3) = 0 because gcd(6,3) = 3 (not 1). The primitive triangle for (n,m) = (2,1) is (x,y,z) = (3,4,5). The primitive triangle for (n,m) = (7,4) is (x,y,z) = (33,56,65). The primitive triangle for (n,m) = (8,1) is (x,y,z) = (63,16,65).
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
- Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
Links
- Reinhard Zumkeller, Rows n = 2..120 of triangle, flattened
Crossrefs
Programs
-
Haskell
a222946 n k = a222946_tabl !! (n-2) !! (k-1) a222946_row n = a222946_tabl !! (n-2) a222946_tabl = zipWith p [2..] a055096_tabl where p x row = zipWith (*) row $ map (\k -> ((x + k) `mod` 2) * a063524 (gcd x k)) [1..] -- Reinhard Zumkeller, Mar 23 2013
Formula
a(n,m) = n^2 + m^2 if n > m >= 1, gcd(n,m) = 1, and n and m are integers of opposite parity (i.e., (-1)^(n+m) = -1), otherwise a(n,m) = 0.
Comments