A223090 Numbers k with the property that if the base-8 representation of k is read backwards, the result is an integral multiple of k.
21, 189, 525, 567, 1134, 1365, 1533, 4599, 4725, 9198, 10773, 12285, 34125, 36855, 38325, 73710, 86037, 87381, 96957, 98301, 269325, 294903, 307125, 589806, 688149, 700245, 774333, 786429, 2150925, 2184525, 2322999, 2359287, 2423925, 2457525, 4645998, 4718574, 5505045, 5515797, 5592405, 5603157, 6193341, 6204093, 6280701, 6291453
Offset: 1
Examples
n = 525 (base 10) = 1015 (base 8). Reading this backwards we get 5101 (base 8) = 2625 (base 10) = 5*n, so 525 is in the sequence.
Programs
-
Mathematica
b8rQ[n_]:=Module[{c=FromDigits[Reverse[IntegerDigits[n,8]],8]},c/n>1 && IntegerQ[c/n]]; Select[Range[63*10^5],b8rQ] (* Harvey P. Dale, Sep 18 2016 *)
Comments