cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223092 Triangle read by rows: let T(n,k) (for n >= 0, 0 <= k <= n) be the number of walks from (0,0) to (n,k) using steps (1,1), (1,0), (1,-1) and (0,-1); n-th row of triangle gives T(n,n), T(n,n-1), ..., T(n,0).

Original entry on oeis.org

1, 1, 2, 1, 4, 7, 1, 6, 18, 29, 1, 8, 33, 86, 133, 1, 10, 52, 179, 431, 650, 1, 12, 75, 316, 978, 2238, 3319, 1, 14, 102, 505, 1874, 5406, 11941, 17498, 1, 16, 133, 754, 3235, 11020, 30241, 65086, 94525, 1, 18, 168, 1071, 5193, 20202, 64698, 171045, 360897, 520508, 1, 20, 207, 1464, 7896, 34362, 124455, 380400, 977040, 2029490, 2910895
Offset: 0

Views

Author

N. J. A. Sloane, Mar 29 2013

Keywords

Examples

			Triangle begins:
[1]
[1, 2]
[1, 4, 7]
[1, 6, 18, 29]
[1, 8, 33, 86, 133]
[1, 10, 52, 179, 431, 650]
[1, 12, 75, 316, 978, 2238, 3319]
...
The T(n,k) array begins:
4:  0  0  0  0   1  10 ...
3:  0  0  0  1   8  52 ...
2:  0  0  1  6  33 179 ...
1:  0  1  4 18  86 431 ...
0:  1  2  7 29 133 650 ...
-------------------------
k/n:0  1  2  3   4   5 ...
T(5,2) = T(5,3) + T(4,3) + T(4,2) + T(4,1) = 52 + 8 + 33 + 86 = 179.- _Philippe Deléham_, Mar 29 2013
This is also Dziemianczuk's array N(-i,i+j) read by antidiagonals:
1,2,7,29,133,650,3319,17498, ...
1,4,18,86,431,2238,11941,65086, ...
1,6,33,179,978,5406,30241,171045, ...
1,8,52,316,1874,11020,64698,380400, ...
1,10,75,505,3235,20202,124455,761160, ...
... - _N. J. A. Sloane_, Dec 05 2013
		

Crossrefs

Cf. A064641 (T(n,0)), A071943, A052709.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n=0 and k=0, 1,
          `if`(n<0 or k<0 or k>n, 0, add(T(n-l[1], k-l[2]),
           l=[[1, 1], [1, 0], [1, -1], [0, -1]]) ))
        end:
    seq(seq(T(n, n-j), j=0..n), n=0..10);  # Alois P. Heinz, Apr 08 2013
  • Mathematica
    max = 10; T[0, 0] = 1; T[n_ /; n >= 0, k_ /; 0 <= k <= max] := T[n, k] = T[n, k+1]+T[n-1, k+1]+T[n-1, k]+T[n-1, k-1]; T[n_, k_] = 0; Table[Table[T[n, k], {k, n, 0, -1}], {n, 0, max}] // Flatten (* Jean-François Alcover, Mar 07 2014, after Philippe Deléham *)

Formula

T(n,k) = T(n,k+1) + T(n-1,k+1) + T(n-1,k) + T(n-1,k-1). - Philippe Deléham, Mar 29 2013