A223170 Triangle S(n,k) by rows: coefficients of 4^((n-1)/2)*(x^(1/4)*d/dx)^n when n is odd, and of 4^(n/2)*(x^(3/4)*d/dx)^n when n is even.
1, 1, 4, 5, 4, 5, 40, 16, 45, 72, 16, 45, 540, 432, 64, 585, 1404, 624, 64, 585, 9360, 11232, 3328, 256, 9945, 31824, 21216, 4352, 256, 9945, 198900, 318240, 141440, 21760, 1024, 208845, 835380, 742560, 228480, 26880, 1024, 208845, 5012280, 10024560, 5940480, 1370880, 129024, 4096
Offset: 0
Examples
Triangle begins: 1; 1, 4; 5, 4; 5, 40, 16; 45, 72, 16; 45, 540, 432, 64; 585, 1404, 624, 64; 585, 9360, 11232, 3328, 256; 9945, 31824, 21216, 4352, 256; 9945, 198900, 318240, 141440, 21760, 1024; 208845, 835380, 742560, 228480, 26880, 1024; 208845, 5012280, 10024560, 5940480, 1370880, 129024, 4096;
Links
- U. N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, Appl. Math. Comput. 257(2015) 566-580.
- U. N. Katugampola, Existence and Uniqueness results for a class of Generalized Fractional Differential Equations, arXiv preprint arXiv:1411.5229, 2014
Crossrefs
Programs
-
Maple
a[0]:= f(x): for i from 1 to 13 do a[i] := simplify(4^((i+1)mod 2)*x^((2((i+1)mod 2)+1)/4)*(diff(a[i-1],x$1 ))); end do;
-
Mathematica
nmax = 12; b[0] = Exp[x]; For[ i = 1 , i <= nmax , i++, b[i] = 4^Mod[i + 1, 2]*x^((2 Mod[i + 1, 2] + 1)/4)*D[b[i - 1], x]] // Simplify; row[1] = {1}; row[n_] := List @@ Expand[b[n]/f[x]] /. x -> 1; Table[row[n], {n, 1, nmax}] // Flatten (* Jean-François Alcover, Feb 22 2019, from Maple *)
Extensions
Missing terms inserted by Jean-François Alcover, Feb 22 2019