A223172 Triangle S(n,k) by rows: coefficients of 6^((n-1)/2)*(x^(1/6)*d/dx)^n when n is odd, and of 6^(n/2)*(x^(5/6)*d/dx)^n when n is even.
1, 1, 6, 7, 6, 7, 84, 36, 91, 156, 36, 91, 1638, 1404, 216, 1729, 4446, 2052, 216, 1729, 41496, 53352, 16416, 1296, 43225, 148200, 102600, 21600, 1296, 43225, 1296750, 2223000, 1026000, 162000, 7776, 1339975, 5742750, 5301000, 1674000, 200880, 7776
Offset: 0
Examples
Triangle begins: 1; 1, 6; 7, 6; 7, 84, 36; 91, 156, 36; 91, 1638, 1404, 216; 1729, 4446, 2052, 216; 1729, 41496, 53352, 16416, 1296; 43225, 148200, 102600, 21600, 1296; 43225, 1296750, 2223000, 1026000, 162000, 7776; 1339975, 5742750, 5301000, 1674000, 200880, 7776; 1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656;
Links
- U. N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, Appl. Math. Comput. 257(2015) 566-580.
- U. N. Katugampola, Existence and Uniqueness results for a class of Generalized Fractional Differential Equations, arXiv preprint arXiv:1411.5229 [math.CA], 2014.
Crossrefs
Programs
-
Maple
a[0]:= f(x): for i from 1 to 13 do a[i] := simplify(6^((i+1)mod 2)*x^((4((i+1)mod 2)+1)/6)*(diff(a[i-1],x$1 ))); end do;