A223209 T(n,k)=Rolling icosahedron face footprints: number of nXk 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or vertical neighbor moves across an icosahedral edge.
1, 3, 3, 9, 15, 9, 27, 75, 75, 27, 81, 375, 657, 375, 81, 243, 1875, 5763, 5763, 1875, 243, 729, 9375, 50553, 90111, 50553, 9375, 729, 2187, 46875, 443451, 1412907, 1412907, 443451, 46875, 2187, 6561, 234375, 3889953, 22163655, 39868737, 22163655
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..2..0..1....0..2..0..2....0..5..0..2....0..2..3..4....0..1..6.10 ..2..8..2..0....2..8..2..8....5..9..5..0....2..0..2..3....1..6..1..6 ..3..2..3..2....3..2..8.13....0..5..0..5....0..2..8..2....4..1..4..1 Face neighbors: 0 -> 1 2 5 1 -> 0 4 6 2 -> 0 3 8 3 -> 2 4 16 4 -> 3 1 17 5 -> 0 7 9 6 -> 1 7 10 7 -> 6 5 11 8 -> 2 9 13 9 -> 8 5 14 10 -> 6 12 17 11 -> 7 12 14 12 -> 11 10 19 13 -> 8 15 16 14 -> 9 11 15 15 -> 14 13 19 16 -> 3 13 18 17 -> 4 10 18 18 -> 16 17 19 19 -> 15 18 12
Links
- R. H. Hardin, Table of n, a(n) for n = 1..220
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 5*a(n-1)
k=3: a(n) = 9*a(n-1) -2*a(n-2)
k=4: a(n) = 19*a(n-1) -54*a(n-2) +32*a(n-3)
k=5: a(n) = 31*a(n-1) -24*a(n-2) -1612*a(n-3) +3816*a(n-4) +1152*a(n-5) -2784*a(n-6) +256*a(n-7)
k=6: [order 12]
k=7: [order 28]
Comments