A223233 T(n,k)=Rolling icosahedron footprints: number of nXk 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an icosahedral edge.
1, 5, 12, 25, 65, 144, 125, 785, 845, 1728, 625, 7445, 25225, 10985, 20736, 3125, 75665, 492365, 812225, 142805, 248832, 15625, 753005, 11043445, 32837285, 26157625, 1856465, 2985984, 78125, 7540985, 236027705, 1697263985, 2191464605, 842416625
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..6..0..5....0..5..6..5....0..7..0..1....0..1..3..1....0..1..0..7 ..0..6.10..5....0..5..6..5....3..7..0..7....3..7..3..9....0..7..0..7 ..0..5.10..4....6..2..6..5....3..7..5..7....3..9.11..7....3..1..3..7 Vertex neighbors: 0 -> 1 2 5 6 7 1 -> 0 2 3 7 8 2 -> 0 1 4 6 8 3 -> 1 7 8 9 11 4 -> 2 6 8 9 10 5 -> 0 6 7 10 11 6 -> 0 2 4 5 10 7 -> 0 1 3 5 11 8 -> 1 2 3 4 9 9 -> 3 4 8 10 11 10 -> 4 5 6 9 11 11 -> 3 5 7 9 10
Links
- R. H. Hardin, Table of n, a(n) for n = 1..97
Formula
Empirical for column k:
k=1: a(n) = 12*a(n-1)
k=2: a(n) = 13*a(n-1)
k=3: a(n) = 35*a(n-1) -90*a(n-2)
k=4: a(n) = 73*a(n-1) -423*a(n-2) +351*a(n-3)
k=5: [order 11]
k=6: [order 26]
Empirical for row n:
n=1: a(n) = 5*a(n-1)
n=2: a(n) = 7*a(n-1) +30*a(n-2) for n>3
n=3: a(n) = 18*a(n-1) +103*a(n-2) -552*a(n-3) +540*a(n-4) for n>5
n=4: a(n) = [order 12] for n>13
Comments